首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Abstract— The Frontier Mountain (FRO) 93001 meteorite is a 4.86 g fragment of an unshocked, medium‐ to coarse‐grained rock from the acapulcoite‐lodranite (AL) parent body. It consists of anhedral orthoenstatite (Fs13.3 ± 0.4Wo3.1 ± 0.2), augite (Fs6.1 ± 0.7Wo42.3 ± 0.9; Cr2O3 = 1.54 ± 0.03), and oligoclase (Ab80.5 ± 3.3Or3.1 ± 0.6) up to >1 cm in size enclosing polycrystalline aggregates of fine‐grained olivine (average grain size: 460 ± 210 μm) showing granoblastic textures, often associated with Fe,Ni metal, troilite, chromite (cr# = 0.91 ± 0.03; fe# = 0.62 ± 0.04), schreibersite, and phosphates. Such aggregates appear to have been corroded by a melt. They are interpreted as lodranitic xenoliths. After the igneous (the term “igneous” is used here strictly to describe rocks or minerals that solidified from molten material) lithology intruding an acapulcoite host in Lewis Cliff (LEW) 86220, FRO 93001 is the second‐known silicate‐rich melt from the AL parent asteroid. Despite some similarities, the silicate igneous component of FRO 93001 (i.e., the pyroxene‐plagioclase mineral assemblage) differs in being coarser‐grained and containing abundant enstatite. Melting‐crystallization modeling suggests that FRO 93001 formed through high‐degree partial melting (≥35 wt%; namely, ≥15 wt% silicate melting and ?20 wt% metal melting) of an acapulcoitic source rock, or its chondritic precursor, at temperatures ≥1200 °C, under reducing conditions. The resulting magnesium‐rich silicate melt then underwent equilibrium crystallization; prior to complete crystallization at ?1040 °C, it incorporated lodranitic xenoliths. FRO 93001 is the highest‐temperature melt from the AL parent‐body so far available in laboratory. The fact that FRO 93001 could form by partial melting and crystallization under equilibrium conditions, coupled with the lack of quench‐textures and evidence for shock deformation in the xenoliths, suggests that FRO 93001 is a magmatic rock produced by endogenic heating rather than impact melting.  相似文献   

3.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

4.
Abstract— –Literature data show that, among EH chondrites, the Abee impact‐melt breccia exhibits unusual mineralogical characteristics. These include very low MnO in enstatite (<0.04 wt%), higher Mn in troilite (0.24 wt%) and oldhamite (0.36 wt%) than in EH4 Indarch and EH3 Kota‐Kota (which are not impact‐melt breccias), low Mn in keilite (3.6–4.3 wt%), high modal abundances of keilite (11.2 wt%) and silica (~7 wt%, but ranging up to 16 wt% in some regions), low modal abundances of total silicates (58.8 wt%) and troilite (5.8 wt%), and the presence of acicular grains of the amphibole, fluor‐richterite. These features result from Abee's complex history of shock melting and crystallization. Impact heating was responsible for the loss of MnO from enstatite and the concomitant sulfidation of Mn. Troilite and oldhamite grains that crystallized from the impact melt acquired relatively high Mn contents. Abundant keilite and silica also crystallized from the melt; these phases (along with metallic Fe) were produced at the expense of enstatite, niningerite and troilite. Melting of the latter two phases produced a S‐rich liquid with higher Fe/Mg and Fe/Mn ratios than in the original niningerite, allowing the crystallization of keilite. Prior to impact melting, F was distributed throughout Abee, perhaps in part adsorbed onto grain surfaces; after impact melting, most of the F that was not volatilized was incorporated into crystallizing grains of fluor‐richterite. Other EH‐chondrite impact‐melt breccias and impact‐melt rocks exhibit some of these mineralogical features and must have experienced broadly similar thermal histories.  相似文献   

5.
Abstract– The Grove Mountains (GRV) 021663 meteorite was collected from the Grove Mountains region of Antarctica. The meteorite is composed primarily of olivine (Fa5.4), orthopyroxene (Fs4.7Wo3.0), chromian diopside (En53.6Fs2.4Wo44), troilite, kamacite, and plagioclase (Ab74.5Or4An21.5). Minor phases include schreibersite and K‐feldspar. The meteorite is highly weathered (W3) and weakly shocked (S2). We determine a whole rock oxygen isotopic composition of δ18O = 7.50‰, δ17O = 3.52‰. Comparisons of these data with other primitive achondrites have resulted in the reclassification of this meteorite as a member of the winonaite group. The occurrences of troilite, metal, and schreibersite in GRV 021663 indicate that these minerals were once completely molten. Euhedral inclusions of pyroxene within plagioclase further suggest that these may have crystallized from a silicate melt, while the depletion of plagioclase, metal, and troilite indicates that GRV 021663 could represent a residuum following partial melting on its parent asteroid. Trace element distributions in silicate minerals do not, however, confirm this scenario. As with other winonaite meteorites, the formation of GRV 021663 probably relates to brecciation and mixing of heterogeneous lithologies, followed by varying degrees of thermal metamorphism on the parent body asteroid. Peak metamorphic conditions may have resulted in localized partial melting of metal and silicate mineralogies, but our data are not conclusive.  相似文献   

6.
Abstract— Metal‐troilite textures are examined in metamorphosed and impact‐affected ordinary chondrites to examine the response of these phases to rapid changes in temperature. Complexly intergrown metal‐troilite textures are shown to form in response to three different impact‐related processes. (1) During impacts, immiscible melt emulsions form in response to spatially focused heating. (2) Immediately after impact events, re‐equilibration of heterogeneously distributed heat promotes metamorphism adjacent to zones of maximum impact heating. Where temperatures exceed ~850 ° C, this post‐impact metamorphism results in melting of conjoined metal‐troilite grains in chondrites that were previously equilibrated through radiogenic metamorphism. When the resulting Fe‐Ni‐S melt domains crystallize, a finely intergrown mixture of troilite and metal forms, which can be zoned with kamacite‐rich margins and taenite‐rich cores. (3) At lower temperatures, post‐impact metamorphism can also cause liberation of sulfur from troilite, which migrates into adjacent Fe‐Ni metal, allowing formation of troilite and occasionally copper within the metal during cooling. Because impact events cause heating within a small volume, post‐impact metamorphism is a short duration event (days to years) compared with radiogenic metamorphism (>106 years). The fast kinetics of metal‐sulfide reactions allows widespread textural changes in conjoined metal‐troilite grains during post‐impact metamorphism, whereas the slow rate of silicate reactions causes these to be either unaffected or only partially annealed, except in the largest impact events. Utilizing this knowledge, information can be gleaned as to whether a given meteorite has suffered a post‐impact thermal overprint, and some constraints can be placed on the temperatures reached and duration of heating.  相似文献   

7.
Abstract— Found during the 2004 U.S. Antarctic Search for Meteorites season, LaPaz Icefield (LAP) 04841 represents an addition to the LaPaz lunar basalts suite and brings the total mass collected to 1.93 kg. The presence of FeNi grains, troilite, and the anorthositic composition of plagioclase are evidence for the lunar origin of this meteorite. Pyroxene and olivine Mn/Fe values plot along the trend set for lunar basalts. Analyses of chromite grains provide a V/(Al + Cr) ratio of 1.33 ± 13, translating to an fO2 one log unit below the IW buffer, in accordance with previous fO2 estimates for lunar basalts. Application of the Zr‐cooling speedometer, for ilmenite and ulvöspinel pairs, gives a cooling rate of 5.2 °C/day, matching previous estimates of cooling rates for the LaPaz lunar meteorites and Apollo mare basalts. Mineral modes and chemistries, as well as trace‐element patterns, provide compelling evidence for pairing of this meteorite to others in the LaPaz lunar basalt suite.  相似文献   

8.
We combined high‐resolution and space‐resolved elemental distribution with investigations of magnetic minerals across Fe,Ni‐alloy and troilite interfaces for two nonmagmatic (Morasko and Mundrabilla) IAB group iron meteorites and an octahedrite found in 1993 in Coahuila/Mexico (Coahuila II) preliminarily classified on Ir and Au content as IIAB group. The aim of this study was to elucidate the crystallization and thermal history using gradients of the siderophile elements Ni, Co, Ge, and Ga and the chalcophile elements Cr, Cu, and Se with a focus on magnetic minerals. The Morasko and Coahuila II meteorite show a several mm‐thick carbon‐ and phosphorous‐rich transition zone between Fe,Ni‐alloy and troilite, which is characterized by magnetic cohenite and nonmagnetic or magnetic schreibersite. At Morasko, these phases have a characteristic trace element composition with Mo enriched in cohenite. In both Morasko and Coahuila II, Ni is enriched in schreibersite. The minerals have crystallized from immiscible melts, either by fractional crystallization and C‐ and P‐enrichment in the melt, or by partial melting at temperatures slightly above the eutectic point. During crystallization of Mundrabilla, the field of immiscibility was not reached. Independent of meteorite group and cooling history, the magnetic mineralogy (daubreelite, cohenite and/or schreibersite, magnetite) is very similar to the troilite (and transition zone) for all three investigated iron meteorites. If these minerals can be separated from the metal, they might provide important information about the early solar system magnetic field. Magnetite is interpreted as a partial melting or a terrestrial weathering product of the Fe,Ni‐alloy under oxidizing conditions.  相似文献   

9.
The unique occurrence of abundant (~1 vol%) near‐pure‐Fe metal in the Camel Donga eucrite is more complicated than previously believed. In addition to that component of groundmass metal, scattered within the meteorite are discrete nodules of much higher kamacite abundance. We have studied the petrology and composition of two of these nodules in the form of samples we call CD2 and CD3. The nodules are ovoids 11 (CD2) to 15 (CD3) mm across, with metal, or inferred preweathering metal, abundances of 12–17 vol% (CD2 is unfortunately quite weathered). The CD3 nodule also includes at its center a 5 mm ovoid clumping (6 vol%) of F‐apatite. Both nodules are fine‐grained, so the high Fe metal and apatite contents are clearly not flukes of inadequate sampling. The metals within the nodules are distinctly Ni‐rich (0.3–0.6 wt%) compared to the pure‐Fe (Ni generally 0.01 wt%) groundmass metals. Bulk analyses of three pieces of the CD2 nodule show that trace siderophile elements Ir, Os, and Co are commensurately enriched; Au is enriched to a lesser degree. The siderophile evidence shows the nodules did not form by in situ reduction of pyroxene FeO. Moreover, the nodules do not show features such as silica‐phase enrichment or pyroxene with reduced FeO (as constrained by FeO/MgO and especially FeO/MnO) predicted by the in situ reduction model. The oxide minerals, even in groundmass samples well away from the nodules, also show little evidence of reduction. Although the nodule boundaries are generally sharp, groundmass‐metal Ni content is anti‐correlated with distance from the CD3 nodule. We infer that the nodules represent materials that originated within impactors into the Camel Donga portion of the eucrite crust, but probably were profoundly altered during later metamorphism/metasomatism. Origin of the pure‐Fe groundmass metal remains enigmatic. In situ reduction probably played an important role, and association in the same meteorite of the Fe‐nodules is probably significant. But the fluid during alteration was probably not (as previously modeled) purely S and O, of simple heat‐driven internal derivation. We conjecture a two‐stage metasomatism, as fluids passed through Camel Donga after impact heating of volatile‐rich chondritic masses (survivors of gentle accretionary impacts) within the nearby crust. First, reduction to form troilite may have been triggered by fluids rich in S2 and CO (derived from the protonodules?), and then in a distinct later stage, fluids were (comparatively) H2O‐rich, and thus reacted with troilite to form pure‐Fe metal along with H2S and SO2. The early eucrite crust was in places a dynamic fluid‐bearing environment that hosted complex chemical processes, including some that engendered significant diversity among metal+sulfide alterations.  相似文献   

10.
Abstract— The Carcote meteorite, detected in 1888 in the northern Chilean Andes, is a brecciated, weakly shocked H5 chondrite. It contains a few barred olivine chondrules and, even more rarely, fan-shaped or granular orthopyroxene chondrules. The chondrules are situated in a fine-grained matrix that consists predominantly of olivine and orthopyroxene with accessory clinopyroxene, troilite, chromite, merrillite, and plagioclase. The metal phase is mainly kamacite with subordinate taenite and traces of native Cu. In its bulk rock composition, Carcote compares well with other H5 chondrites so far analysed, except for a distinctly higher C content. Microprobe analyses revealed the following mineral compositions: olivine (Fa16.5–20), orthopyroxene (Fs14–17.5), diopsidic clinopyroxene (FS6–7), plagioclase (An15–20). Troilite is stoichimetric FeS with traces of Ni and Cr; chromite has Cr/(Cr + Al) of 0.86, Fe2+/(Fe2+ + Mg) of 0.80-0.88 and contains considerable amounts of Ti, Mn, and Zn. Merrillite is close to the theoretical formula Ca18(Mg, Fe)2Na2(PO4)14, although with a Na deficiency not compensated for by excess Ca; the Mg/(Mg + Fe2+) ratio of the Carcote merrilite is 0.93-0.95. Kamacite and taenite have Ni contents of 5.6–7.2 and 17.1–23.4 wt%, respectively. Native Cu contains about 3.1–3.3 wt% Fe and 1.6 wt% Ni. Application of different geothermometers to the Carcote H5 chondrite yielded apparently inconsistent results. The highest temperature range of 850–950 °C (at 1 bar) is derived from the Ca-in-opx thermometer. From the cpx-opx solvus geothermometers and the two-pyroxene Fe-Mg exchange geothermometer, a lower temperature range of 750–840 °C is estimated, whereas lower and more variable temperatures of 630–770 °C are obtained from the Ca-in-olivine geothermometer. Recent calibrations of the olivine-spinel geothermometer yielded a still lower temperature range of 570–670 °C, which fits well to the temperature information derived from the Ni distribution between kamacite and taenite. Judging from crystal chemical considerations, we assume that these different temperatures reflect the closure of different exchange equilibria during cooling of the meteorite parent body.  相似文献   

11.
Tuite is a high‐pressure γ‐form of Ca3(PO4)2. An occurrence of tuite partly transformed from merrillite and chlorapatite was observed in the chondritic area adjacent to the shock veins in the Suizhou meteorite. Tuite grains are found in contact with both merrillite and chlorapatite, indicating two different transformation pathways. Tuite isochemically transformed from merrillite contains much higher contents of Na2O and MgO than those transformed from chlorapatite. Tuite transformed from merrillite does not contain Cl, but tuite transformed from chlorapatite contains 1.90–3.91 wt% of Cl, hence indicating an incomplete phase transformation from chlorapatite to tuite. P‐T conditions of above 12 GPa and 1100 °C are probably required for the transformation from merrillite and chlorapatite to tuite. A temperature gradient from the hot vein at 2000 °C to the surrounding chondritic area at 1000 °C corresponds to the partial phase transitions in the Suizhou phosphates. Fast cooling of the thin shock veins plays a key role in the preservation of phosphates that suffered partial high‐pressure phase transformation.  相似文献   

12.
Abstract— An H5 chondrite was found near the village of Rumanová, Slovakia. dominant minerals of the meteorite are enstatite, olivine, kamacite, taenite and troilite. The minor minerals are oligoclase, augite, pigeonite, accessory chromite, whitlockite and chlorapatite. The composition of olivine (Fa19.0) and low-Ca orthopyroxene (Fs17.0), and the density and chemical composition of the meteorite correspond to those of an H chondrite. Normal zoning of Ni in metal grains and parallel planar fractures in olivine suggest weak shock metamorphism of stage S3. Due to moderate oxidation of metal, iron hydroxides were formed corresponding to weathering stage W2.  相似文献   

13.
Abstract— The lherzolitic Martian meteorite Northwest Africa (NWA) 1950 consists of two distinct zones: 1) low‐Ca pyroxene poikilically enclosing cumulate olivine (Fo70–75) and chromite, and 2) areas interstitial to the oikocrysts comprised of maskelynite, low‐ and high‐Ca pyroxene, cumulate olivine (Fo68–71) and chromite. Shock metamorphic effects, most likely associated with ejection from the Martian subsurface by large‐scale impact, include mechanical deformation of host rock olivine and pyroxene, transformation of plagioclase to maskelynite, and localized melting (pockets and veins). These shock effects indicate that NWA 1950 experienced an equilibration shock pressure of 35–45 GPa. Large (millimeter‐size) melt pockets have crystallized magnesian olivine (Fo78–87) and chromite, embedded in an Fe‐rich, Al‐poor basaltic to picro‐basaltic glass. Within the melt pockets strong thermal gradients (minimum 1 °C/μm) existed at the onset of crystallization, giving rise to a heterogeneous distribution of nucleation sites, resulting in gradational textures of olivine and chromite. Dendritic and skeletal olivine, crystallized in the melt pocket center, has a nucleation density (1.0 × 103 crystals/mm2) that is two orders of magnitude lower than olivine euhedra near the melt margin (1.6 × 105 crystals/mm2). Based on petrography and minor element abundances, melt pocket formation occurred by in situ melting of host rock constituents by shock, as opposed to melt injected into the lherzolitic target. Despite a common origin, NWA 1950 is shocked to a lesser extent compared to Allan Hills (ALH) 77005 (45–55 GPa). Assuming ejection in a single shock event by spallation, this places NWA 1950 near to ALH 77005, but at a shallower depth within the Martian subsurface. Extensive shock melt networks, the interconnectivity between melt pockets, and the ubiquitous presence of highly vesiculated plagioclase glass in ALH 77005 suggests that this meteorite may be transitional between discreet shock melting and bulk rock melting.  相似文献   

14.
Abstract— Mineralogy, major element compositions of minerals, and elemental and oxygen isotopic compositions of the whole rock attest to a lunar origin of the meteorite Northwest Africa (NWA) 032, an unbrecciated basalt found in October 1999. The rock consists predominantly of olivine, pyroxene and chromite phenocrysts, set in a crystalline groundmass of feldspar, pyroxene, ilmenite, troilite and trace metal. Whole‐rock shock veins comprise a minor, but ubiquitous portion of the rock. Undulatory to mosaic extinction in olivine and pyroxene phenocrysts and micro‐faults in groundmass and phenocrysts also are attributed to shock. Several geochemical signatures taken together indicate unambiguously that NWA 032 originated from the Moon. The most diagnostic criteria include whole‐rock oxygen isotopic composition and ratios of Fe/Mn in the whole rock, olivine, and pyroxene. A lunar origin is documented further by the presence of Fe‐metal, troilite, and ilmenite; zoning to extremely Fe‐rich compositions in pyroxene; the ferrous oxidation state of all Fe in pyroxene; and the rare earth element (REE) pattern with a well‐defined negative europium anomaly. This rock is similar in major element chemistry to basalts from Apollo 12 and 15, but is enriched in light REE and has an unusually high Th/Sm ratio. Some Apollo 14 basalts yield a closer match to NWA 032 in REE patterns, but have higher concentrations of Al2O3. Ar‐Ar step release results are complex, but yield a whole‐rock age of ?2.8 Ga, suggesting that NWA 032 was extruded at 2.8 Ga or earlier. This rock may be the youngest sample of mare basalt collected to date. Noble gas concentrations combined with previously collected radionuclide data indicate that the meteorite exposure history is distinct from currently recognized lunar meteorites. In short, the geochemical and petrographic features of NWA 032 are not matched by Apollo or Luna samples, nor by previously identified lunar meteorites, indicating that it originates from a previously unsampled mare deposit. Detailed assessment of petrographic features, olivine zoning, and thermodynamic modelling indicate a relatively simple cooling and crystallization history for NWA 032. Chromite‐spinel, olivine, and pyroxene crystallized as phenocrysts while the magma cooled no faster than 2 °C/h based on the polyhedral morphology of olivine. Comparison of olivine size with crystal growth rates and preserved Fe‐Mg diffusion profiles in olivine phenocrysts suggest that olivine was immersed in the melt for no more than 40 days. Plumose textures in groundmass pyroxene, feldspar, and ilmenite, and Fe‐rich rims on the phenocrysts formed during rapid crystallization (cooling rates ?20 to 60 °C/h) after eruption.  相似文献   

15.
Al Huwaysah 010 is an ungrouped achondrite meteorite, recently referred to as a brachinite-like meteorite. This meteorite, showing a fine-grained assemblage of low-Ca pyroxene and opaque phases, is strongly reduced in comparison to other reduced brachinites. The occurrence of some tiny plates of graphite and oldhamite in this meteorite suggests that a partial melt residue has experienced a further reduction process. Olivine, the most abundant phase, is compositionally homogeneous (Fo83.3) as well as the clinopyroxene (En45.5Fs10.8Wo43.7) and the plagioclase (Ab69.5). Orthopyroxene (En85.4Fs13.9Wo0.7) also occurs but only in a fine intergrowth. Other accessory phases are Fe metal grains (Ni-free or Cr-bearing Fe-Ni alloy), troilite, chlorapatite, pentlandite (as inclusions in chromite). The sample shows two different closure temperatures: the highest (≈900°C) is determined via the olivine–chromite intercrystalline geothermometer and the lowest temperature (≈520°C) is determined via the pyroxene-based intracrystalline geothermometer. These temperatures may represent, respectively, the closure temperature associated with the formation and a subsequent impact event excavating the sample from the parental body. The visible to near-infrared (VNIR) reflectance spectra of Al Huwaysah 010 exhibit low reflectance, consistent with the presence of darkening components, and weak absorptions indicative of olivine and pyroxene. Comparing the spectral parameters of Al Huwaysah 010 to potential parent bodies characterized by olivine–pyroxene mineralogy, we find that it falls within the field previously attributed to the SIII type asteroids. These results lead us to classify the Al Huwaysah 010 meteorite as the most reduced brachinite, whose VNIR spectral features show strong affinities with those of SIII asteroids.  相似文献   

16.
Abstract— A new mineral named galileiite, NaFe4(PO4)3, has been found within troilite nodules in iron meteorites of the IIIA and IIIB groups. the mineral is optically positive (ω = 1.72, ω = 1.75), colorless in transmitted light and pale amber in reflected light. Grains of galileiite are very small, generally 10 μm or less; rarely, grains are up to 30 μm. It is associated with Ca-free graftonite (or Ca-free sarcopside), chromite and, occasionally, schreibersite. Johnsomervilleite may occur within troilite nodules in the same meteorite as galileiite, but they have never been observed together in the same troilite nodule. Because of the small sample size, single crystal x-ray work was not successful; however, Gandolfi diffraction measurements were made. The three strongest diffraction peaks are 2.71 Å, 3.01 Å and 4.13 Å. On the basis of its composition and similar diffraction pattern, it is considered to be related to johnsomervilleite, fillowite and chladniite, all of which are rhombohedral and isostructural. Galileiite may also be rhombohedral, but that is yet to be demonstrated.  相似文献   

17.
Abstract— Portales Valley (PV) is an unusual metal‐veined meteorite that has been classified as an H6 chondrite. It has been regarded either as an annealed impact melt breccia, as a primitive achondrite, or as a meteorite with affinities to silicated iron meteorites. We studied the petrology of PV using a variety of geochemical‐mineralogical techniques. Our results suggest that PV is the first well‐documented metallic‐melt meteorite breccia. Mineral‐chemical and other data suggest that the protolith to PV was an H chondrite. The composition of FeNi metal in PV is somewhat fractionated compared to H chondrites and varies between coarse vein and silicate‐rich portions. It is best modeled as having formed by partial melting at temperatures of ?940–1150 °C, with incomplete separation of solid from liquid metal. Solid metal concentrated in the coarse vein areas and S‐bearing liquid metal concentrated in the silicate‐rich areas, possibly as a result of a surface energy effect. Both carbon and phosphorus must have been scavenged from large volumes and concentrated in metallic liquid. Graphite nodules formed by crystallization from this liquid, whereas phosphate formed by reaction between P‐bearing metal and clinopyroxene components, depleting clinopyroxene throughout much of the meteorite and growing coarse phosphate at metal‐silicate interfaces. Some phosphate probably crystallized from P‐bearing liquids, but most probably formed by solid‐state reaction at ?975‐725 °C. Phosphate‐forming and FeO‐reduction reactions were widespread in PV and entailed a change in the mineralogy of the stony portion on a large scale. Portales Valley experienced protracted annealing from supersolidus to subsolidus temperatures, probably by cooling at depth within its parent body, but the main differences between PV and H chondrites arose because maximum temperatures were higher in PV. A combination of a relatively weak shock event and elevated pre‐shock temperatures probably produced the vein‐and‐breccia texture, with endogenic heating being the main heat source for melting, and with stress waves from an impact event being an essential trigger for mobilizing metal. Portales Valley is best classified as an H7 metallic‐melt breccia of shock stage S1. The meteorite is transitional between more primitive (chondritic) and evolved (achondrite, iron) meteorite types and offers clues as to how differentiation could have occurred in some asteroidal bodies.  相似文献   

18.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

19.
NWA 2737, a Martian meteorite from the Chassignite subclass, contains minute amounts (0.010 ± 0.005 vol%) of metal‐saturated Fe‐Ni sulfides. These latter bear evidence of the strong shock effects documented by abundant Fe nanoparticles and planar defects in Northwest Africa (NWA) 2737 olivine. A Ni‐poor troilite (Fe/S = 1.0 ± 0.01), sometimes Cr‐bearing (up to 1 wt%), coexists with micrometer‐sized taenite/tetrataenite‐type native Ni‐Fe alloys (Ni/Fe = 1) and Fe‐Os‐Ir‐(Ru) alloys a few hundreds of nanometers across. The troilite has exsolved flame‐like pentlandite (Fe/Fe + Ni = 0.5–0.6). Chalcopyrite is almost lacking, and no pyrite has been found. As a hot desert find, NWA 2737 shows astonishingly fresh sulfides. The composition of troilite coexisting with Ni‐Fe alloys is completely at odds with Chassigny and Nahkla sulfides (pyrite + metal‐deficient monoclinic‐type pyrrhotite). It indicates strongly reducing crystallization conditions (close to IW), several log units below the fO2 conditions inferred from chromites compositions and accepted for Chassignites (FMQ‐1 log unit). It is proposed that reduction in sulfides into base and precious metal alloys is operated via sulfur degassing, which is supported by the highly resorbed and denticulated shape of sulfide blebs and their spongy textures. Shock‐related S degassing may be responsible for considerable damages in magmatic sulfide structures and sulfide assemblages, with concomitant loss of magnetic properties as documented in some other Martian meteorites.  相似文献   

20.
Abstract– Sacramento Wash 005 (SaW) 005, Meteorite Hills 00428 (MET) 00428, and Mount Howe 88403 (HOW) 88403 are S‐rich Fe,Ni‐rich metal meteorites with fine metal structures and homogeneous troilite. We compare them with the H‐metal meteorite, Lewis Cliff 88432. Phase diagram analyses suggest that SaW 005, MET 00428, and HOW 88403 were liquids at temperatures above 1350 °C. Tridymite in HOW 88403 constrains formation to a high‐temperature and low‐pressure environment. The morphology of their metal‐troilite structures may suggest that MET 00428 cooled the slowest, SaW 005 cooled faster, and HOW 88403 cooled the quickest. SaW 005 and MET 00428 contain H‐chondrite like silicates, and SaW 005 contains a chondrule‐bearing inclusion that is texturally and compositionally similar to H4 chondrites. The compositional and morphological similarities of SaW 005 and MET 00428 suggest that they are likely the result of impact processing on the H‐chondrite parent body. SaW 005 and MET 00428 are the first recognized iron‐ and sulfide‐rich meteorites, which formed by impact on the H‐chondrite parent body, which are distinct from the IIE‐iron meteorite group. The morphological and chemical differences of HOW 88403 suggest that it is not from the H‐chondrite body, although it likely formed during an impact on a chondritic parent body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号