首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— An acapulcoite, Northwest Africa (NWA) 725, a transitional acapulcoite, Graves Nunataks (GRA) 95209, and a lodranite, NWA 2235, have been studied with the short‐lived chronometer 182Hf‐182W system in order to better constrain the early evolution history in the acapulcoite‐lodranite parent body. Unlike the more evolved achondrites originating from differentiated asteroids—e.g., eucrites and angrites—bulk rock acapulcoites and lodranite are characterized by distinct 182W deficits relative to the terrestrial W, as well as to the undifferentiated chondrites, εw varies from ?2.7 to ?2.4. This suggests that live‐182Hf was present during the formation of acapulcoites and lodranites, and their parent body probably had never experienced a global melting event. Due to the large uncertainties associated with the isochron for each sample, the bulk isochron that regressed through the mineral separates from all 3 samples has provided the best estimate to date for the timing of metamorphism in the acapulcoite‐lodranite parent body, 5 (+6/‐5) Myr after the onset of the solar system. It is thus inconclusive whether acapulcoites and lodranites have shared the same petrogenetic origin, based on the Hf‐W data of this study. Nevertheless, the formation of acapulcoite‐lodranite clan appears to have post‐dated the metal‐silicate segregation in differentiated asteroids. This can be explained by a slower accretion rate for the acapulcoite‐lodranite parent body, or that it had never accreted to a critical mass that could allow the metal‐silicate segregation to occur naturally.  相似文献   

2.
Terrestrial weathering of hot desert achondrite meteorite finds and heterogeneous phase distributions in meteorites can complicate interpretation of petrological and geochemical information regarding parent‐body processes. For example, understanding the effects of weathering is important for establishing chalcophile and siderophile element distributions within sulfide and metal phases in meteorites. Heterogeneous mineral phase distribution in relatively coarsely grained meteorites can also lead to uncertainties relating to compositional representativeness. Here, we investigate the weathering and high‐density (e.g., sulfide, spinel, Fe‐oxide) phase distribution in sections of ultramafic achondrite meteorite Northwest Africa (NWA) 4872. NWA 4872 is an olivine‐rich brachinite (Fo63.6 ± 0.5) with subsidiary pyroxene (Fs9.7 ± 0.1Wo46.3 ± 0.2), Cr‐spinel (Cr# = 70.3 ± 1.1), and weathered sulfide and metal. Raman mapping confirms that weathering has redistributed sulfur from primary troilite, resulting in the formation of Fe‐oxide (‐hydroxide) and marcasite (FeS2). From Raman mapping, NWA 4872 is composed of olivine (89%), Ca‐rich pyroxene (0.4%), and Cr‐spinel (1.1%), with approximately 7% oxidized metal and sulfide and 2.3% marcasite‐dominated sulfide. Microcomputed tomography (micro‐CT) observations reveal high‐density regions, demonstrating heterogeneities in mineral distribution. Precision cutting of the largest high‐density region revealed a single 2 mm Cr‐spinel grain. Despite the weathering in NWA 4872, rare earth element (REE) abundances of pyroxene determined by laser‐ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) indicate negligible modification of these elements in this mineral phase. The REE abundances of mineral grains in NWA 4872 are consistent with formation of the meteorite as the residuum of the partial melting process that occurred on its parent body. LA‐ICP‐MS analyses of sulfide and alteration products demonstrate the mobility of Re and/or Os; however, highly siderophile element (HSE) abundance patterns remain faithful recorders of processes acting on the brachinite parent body(ies). Detailed study of weathering and phase distribution offers a powerful tool for assessing the effects of low‐temperature alteration and for identifying robust evidence for parent‐body processes.  相似文献   

3.
Abstract— A database of magnetic susceptibility measurements of stony achondrites (acapulcoite‐lodranite clan, winonaites, ureilites, angrites, aubrites, brachinites, howardite‐eucrite‐diogenite (HED) clan, and Martian meteorites, except lunar meteorites) is presented and compared to our previous work on chondrites. This database provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and more rarely pyrrhotite and titanomagnetite) in these meteorites. Except for ureilites, achondrites appear much more heterogeneous than chondrites in metal content, both at the meteorite scale and at the parent body scale. We propose a model to explain the lack of or inefficient metal segregation in a low gravity context. The relationship between grain density and magnetic susceptibility is discussed. Saturation remanence appears quite weak in most metal‐bearing achondrites (HED and aubrites) compared to Martian meteorites. Ureilites are a notable exception and can carry a strong remanence, similar to most chondrites.  相似文献   

4.
Olivine‐dominated (70–80 modal %) achondrite meteorite Lewis Cliff (LEW) 88763 originated from metamorphism and limited partial melting of a FeO‐rich parent body. The meteorite experienced some alteration on Earth, evident from subchondritic Re/Os, and redistribution of rhenium within the sample. LEW 88763 is texturally similar to winonaites, has a Δ17O value of ?1.19 ± 0.10‰, and low bulk‐rock Mg/(Mg+Fe) (0.39), similar to the FeO‐rich cumulate achondrite Northwest Africa (NWA) 6693. The similar bulk‐rock major‐, minor‐, and trace‐element abundances of LEW 88763, relative to some carbonaceous chondrites, including ratios of Pd/Os, Pt/Os, Ir/Os, and 187Os/188Os (0.1262), implies a FeO‐ and volatile‐rich precursor composition. Lack of fractionation of the rare earth elements, but a factor of approximately two lower highly siderophile element abundances in LEW 88763, compared with chondrites, implies limited loss of Fe‐Ni‐S melts during metamorphism and anatexis. These results support the generation of high Fe/Mg, sulfide, and/or metal‐rich partial melts from FeO‐rich parent bodies during partial melting. In detail, however, LEW 88763 cannot be a parent composition to any other meteorite sample, due to highly limited silicate melt loss (0 to <<5%). As such, LEW 88763 represents the least‐modified FeO‐rich achondrite source composition recognized to date and is distinct from all other meteorites. LEW 88763 should be reclassified as an anomalous achondrite that experienced limited Fe,Ni‐FeS melt loss. Lewis Cliff 88763, combined with a growing collection of FeO‐rich meteorites, such as brachinites, brachinite‐like achondrites, the Graves Nunataks (GRA) 06128/9 meteorites, NWA 6693, and Tafassasset, has important implications for understanding the initiation of planetary differentiation. Specifically, regardless of precursor compositions, partial melting and differentiation processes appear to be similar on asteroidal bodies spanning a range of initial oxidation states and volatile contents.  相似文献   

5.
Abstract— The trace element distributions of individual minerals from seven acapulcoites and lodranites have been studied. Systematic differences are evident between some members of the two groups. Specifically, pyroxenes from the lodranites MacAlpine Hills (MAC) 88177 and Lewis Cliff (LEW) 88280 exhibit depletions of the rare earth elements (REE) and other incompatible trace elements (Ti, Zr, Y), relative to acapulcoite (Acapulco, Allan Hills (ALH) A81261) pyroxenes, that are consistent with the formation and removal of 15% or more silicate partial melts from these meteorites. Phosphate REE patterns in these lodranites also support this scenario. However, other members of the acapulcoite‐lodranite clan exhibit more complex trace element variations. Elephant Moraine (EET) 84302, which has been classified as transitional between the acapulcoites and lodranites, generally has trace element characteristics similar to the acapulcoites. However, its plagioclase REE compositions suggest a somewhat greater degree of metamorphism than that experienced by acapulcoites such as Acapulco and ALHA81261. Similar and elevated REE abundances in the silicate phases from acapulcoite ALHA81187 and lodranite Graves Nunataks (GRA) 95209 suggest that these two meteorites, in fact, experienced similar thermal histories. This probably included some silicate partial melting, although little melt appears to have been lost from the samples. The observed variations in the trace element abundances of these samples from the acapulcoite‐lodranite clan emphasize the complex and varied processes that have acted on their parent body. The simple bimodal classification of these meteorites based primarily on petrographic criteria, which has been used to date, appears to be inadequate to describe this diverse group of samples, as they represent a range of degrees of partial melting, both with and without accompanying melt migration. In some instances, secondary processes on the parent body, such as cryptic metasomatism, have further modified sample compositions.  相似文献   

6.
Except for asteroid sample return missions, measurements of the spectral properties of both meteorites and asteroids offer the best possibility of linking meteorite groups with their parent asteroid(s). Visible plus near‐infrared spectra reveal distinguishing absorption features controlled mainly by the Fe2+ contents and modal abundances of olivine and pyroxene. Meteorite samples provide relationships between spectra and mineralogy. These relationships are useful for estimating the olivine and pyroxene mineralogy of stony (S‐type) asteroid surfaces. Using a suite of 10 samples of the acapulcoite–lodranite clan (ALC), we have developed new correlations between spectral parameters and mafic mineral compositions for partially melted asteroids. A well‐defined relationship exists between Band II center and ferrosilite (Fs) content of orthopyroxene. Furthermore, because Fs in orthopyroxene and fayalite (Fa) content in olivine are well correlated in these meteorites, the derived Fs content can be used to estimate Fa of the coexisting olivine. We derive new equations for determining the mafic silicate compositions of partially melted S‐type asteroid parent bodies. Stony meteorite spectra have previously been used to delineate meteorite analog spectral zones in Band I versus band area ratio (BAR) parameter space for the establishment of asteroid–meteorite connections with S‐type asteroids. However, the spectral parameters of the partially melted ALC overlap with those of ordinary (H) chondrites in this parameter space. We find that Band I versus Band II center parameter space reveals a clear distinction between the ALC and the H chondrites. This work allows the distinction of S‐type asteroids as nebular (ordinary chondrites) or geologically processed (primitive achondrites).  相似文献   

7.
Iron meteorites provide a record of the thermal evolution of their parent bodies, with cooling rates inferred from the structures observed in the Widmanstätten pattern. Traditional planetesimal thermal models suggest that meteorite samples derived from the same iron core would have identical cooling rates, possibly providing constraints on the sizes and structures of their parent bodies. However, some meteorite groups exhibit a range of cooling rates or point to uncomfortably small parent bodies whose survival is difficult to reconcile with dynamical models. Together, these suggest that some meteorites are indicating a more complicated origin. To date, thermal models have largely ignored the effects that impacts would have on the thermal evolution of the iron meteorite parent bodies. Here we report numerical simulations investigating the effects that impacts at different times have on cooling rates of cores of differentiated planetesimals. We find that impacts that occur when the core is near or above its solidus, but the mantle has largely crystallized can expose iron near the surface of the body, leading to rapid and nonuniform cooling. The time period when a planetesimal can be affected in this way can range between 20 and 70 Myr after formation for a typical 100 km radius planetesimal. Collisions during this time would have been common, and thus played an important role in shaping the properties of iron meteorites.  相似文献   

8.
Abstract— In this paper we reconstruct the heterogeneous lithology of an unusual intrusive rock from the acapulcoite‐lodranite (AL) parent asteroid on the basis of the petrographic analysis of 5 small (<8.3 g) meteorite specimens from the Frontier Mountain ice field (Antarctica). Although these individual specimens may not be representative of the parent‐rock lithology due to their relatively large grain size, by putting together evidence from various thin sections and literature data we conclude that Frontier Mountain (FRO) 90011, FRO 93001, FRO 99030, and FRO 03001 are paired fragments of a medium‐ to coarse‐grained igneous rock which intrudes a lodranite and entrains xenoliths. The igneous matrix is composed of enstatite (Fs13.3 ± 0.4 Wo3.1 ± 0.2), Cr‐rich augite (Fs6.1 ± 0.7 Wo42.3 ± 0.9), and oligoclase (Ab80.5 ± 3.3 Or3.2 ± 0.6). The lodranitic xenoliths show a fine‐grained (average grain size 488 ± 201 μm) granoblastic texture and consist of olivine Fa9.5 ± 0.4 and Fe,Ni metal and minor amounts of enstatite Fs12.7 ± 0.4 Wo1.8 ± 0.1, troilite, chromite, schreibersite, and Ca‐phosphates. Crystals of the igneous matrix and lodranitic xenoliths are devoid of shock features down to the scanning electron microscope scale. From a petrogenetic point of view, the lack of shock evidence in the lodranitic xenoliths of all the studied samples favors the magmatic rather than the impact melting origin of this rock. FRO 95029 is an acapulcoite and represents a separate fall from the AL parent asteroid, i.e., it is not a different clast entrained by the FRO 90011, FRO 93001, FRO 99030, and FRO 03001 melt, as in genomict breccias common in the meteoritic record. The specimen‐to‐meteorite ratio for the AL meteorites so far found at Frontier Mountain is thus 2.5.  相似文献   

9.
The abundances, distributions, enantiomeric ratios, and carbon isotopic compositions of amino acids in two fragments of the Aguas Zarcas CM2 type carbonaceous chondrite fall and a fragment of the CM2 Murchison meteorite were determined via liquid chromatography time‐of‐flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. A suite of two‐ to six‐carbon aliphatic primary amino acids was identified in the Aguas Zarcas and Murchison meteorites with abundances ranging from ~0.1 to 158 nmol/g. The high relative abundances of α‐amino acids found in these meteorites are consistent with a Strecker‐cyanohydrin synthesis on these meteorite parent bodies. Amino acid enantiomeric and carbon isotopic measurements in both fragments of the Aguas Zarcas meteorites indicate that both samples experienced some terrestrial protein amino acid contamination after their fall to Earth. In contrast, similar measurements of alanine in Murchison revealed that this common protein amino acid was both racemic (D ≈ L) and heavily enriched in 13C, indicating no measurable terrestrial alanine contamination of this meteorite. Carbon isotope measurements of two rare non‐proteinogenic amino acids in the Aguas Zarcas and Murchison meteorites, α‐aminoisobutyric acid and D‐ and L‐isovaline, also fall well outside the typical terrestrial range, confirming they are extraterrestrial in origin. The detections of non‐terrestrial L‐isovaline excesses of ~10–15% in both the Aguas Zarcas and Murchison meteorites, and non‐terrestrial L‐glutamic acid excesses in Murchison of ~16–40% are consistent with preferential enrichment of circularly polarized light generated L‐amino acid excesses of conglomerate enantiopure crystals during parent body aqueous alteration and provide evidence of an early solar system formation bias toward L‐amino acids prior to the origin of life.  相似文献   

10.
Northwest Africa (NWA) 11042 is a heavily shocked achondrite with medium‐grained cumulate textures. Its olivine and pyroxene compositions, oxygen isotopic composition, and chromium isotopic composition are consistent with L chondrites. Sm‐Nd dating of its primary phases shows a crystallization age of 4100 ± 160 Ma. Ar‐Ar dating of its shocked mineral maskelynite reveals an age of 484.0 ± 1.5 Ma. This age coincides roughly with the breakup event of the L chondrite parent body evident in the shock ages of many L chondrites and the terrestrial record of fossil L chondritic chromite. NWA 11042 shows large depletions in siderophile elements (<0.01×CI) suggestive of a complex igneous history involving extraction of a Fe‐Ni‐S liquid on the L chondrite parent body. Due to its relatively young crystallization age, the heat source for such an igneous process is most likely impact. Because its mineralogy, petrology, and O isotopes are similar to the ungrouped achondrite NWA 4284 (this work), the two meteorites are likely paired and derived from the same parent body.  相似文献   

11.
We have developed a statistical framework that uses collisional evolution models, shock physics modeling, and scaling laws to determine the range of plausible collisional histories for individual meteorite parent bodies. It is likely that those parent bodies that were not catastrophically disrupted sustained hundreds of impacts on their surfaces—compacting, heating, and mixing the outer layers; it is highly unlikely that many parent bodies escaped without any impacts processing the outer few kilometers. The first 10–20 Myr were the most important time for impacts, both in terms of the number of impacts and the increase of specific internal energy due to impacts. The model has been applied to evaluate the proposed impact histories of several meteorite parent bodies: up to 10 parent bodies that were not disrupted in the first 100 Myr experienced a vaporizing collision of the type necessary to produce the metal inclusions and chondrules on the CB chondrite parent; around 1–5% of bodies that were catastrophically disrupted after 12 Myr sustained impacts at times that match the heating events recorded on the IAB/winonaite parent body; more than 75% of 100 km radius parent bodies, which survived past 100 Myr without being disrupted, sustained an impact that excavates to the depth required for mixing in the outer layers of the H‐chondrite parent body; and to protect the magnetic field on the CV chondrite parent body, the crust would have had to have been thick (approximately 20 km) to prevent it being punctured by impacts.  相似文献   

12.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

13.
We have studied magnetic fractions of five acapulcoites, three lodranites, and two winonaites to investigate chemical compositions of their precursor materials and metallic partial melting processes occurring on their parent bodies. One winonaite metal is similar in composition to low Au, low Ni IAB iron subgroup, indicating genetic relationship between them. Magnetic fractions of chondrule‐bearing acapulcoite and winonaite have intermediate chemical compositions of metals between H chondrites and EL chondrites. This fact indicates that the precursor materials of acapulcoite–lodranites and winonaites were similar to H and/or EL chondrites in chemical compositions. Magnetic fractions in acapulcoite–lodranites have a large variety of chemical compositions. Most of them show enrichments of W, Re, Ir, Pt, Mo, and Rh, and one of them shows clear depletion in Re and Ir relative to those of chondrule‐bearing acapulcoite. Chemical compositional variations among acapulcoite–lodranite metals cannot be explained by a single Fe‐Ni‐S partial melting event, but a two‐step partial melting model can explain it.  相似文献   

14.
A crucial topic in planetology research is establishing links between primitive meteorites and their parent asteroids. In this study, we investigate the feasibility of a connection between asteroids similar to 21 Lutetia, encountered by the Rosetta mission in July 2010, and the CH3 carbonaceous chondrite Pecora Escarpment 91467 (PCA 91467). Several spectra of this meteorite were acquired in the ultraviolet to near‐infrared (0.3–2.2 μm) and in the midinfrared to thermal infrared (2.5–30.0 μm or 4000 to ~333 cm−1), and they are compared here to spectra from the asteroid 21 Lutetia. There are several similarities in absorption bands and overall spectral behavior between this CH3 meteorite and 21 Lutetia. Considering also that the bulk density of Lutetia is similar to that of CH chondrites, we suggest that this asteroid could be similar, or related to, the parent body of these meteorites, if not the parent body itself. However, the apparent surface diversity of Lutetia pointed out in previous studies indicates that it could simultaneously be related to other types of chondrites. Future discovery of additional unweathered CH chondrites could provide deeper insight in the possible connection between this family of metal‐rich carbonaceous chondrites and 21 Lutetia or other featureless, possibly hydrated high‐albedo asteroids.  相似文献   

15.
We measured concentrations and isotopic ratios of noble gases in the Rumuruti (R) chondrite Mount Prestrud (PRE) 95410, a regolith breccia exhibiting dark/light structures. The meteorite contains solar and cosmogenic noble gases. Based on the solar and cosmogenic noble gas compositions, we calculated a heliocentric distance of its parent body, a cosmic‐ray exposure age on the parent body regolith (parent body exposure age), and a cosmic‐ray exposure age in interplanetary space (space exposure age) of the meteorite. Assuming a constant solar wind flux, the estimated heliocentric distance was smaller than 1.4 ± 0.3 au, suggesting inward migration from the asteroid belt regions where the parent body formed. The largest known Mars Trojan 5261 Eureka is a potential parent body of PRE 95410. Alternatively, it is possible that the solar wind flux at the time of the parent body exposure was higher by a factor of 2–3 compared to the lunar regolith exposure. In this case, the estimated heliocentric distance is within the asteroid belt region. The parent body exposure age is longer than 19.1 Ma. This result indicates frequent impact events on the parent body like that recorded for other solar‐gas‐rich meteorites. Assuming single‐stage exposure after an ejection event from the parent body, the space exposure age is 11.0 ± 1.1 Ma, which is close to the peak of ~10 Ma in the exposure age distribution for the solar‐gas‐free R chondrites.  相似文献   

16.
Noble gases and nitrogen were measured in two adjacent samples each from the Raghunathpura (IIAB) and the Nyaung (IIIAB) iron meteorite falls. Light noble gases in both the meteorites were of pure cosmogenic origin. Using (3He/4He)c ratios and the production systematic of Ammon et al. ( 2009 ), we estimated the sample depth and meteoroid size for Nyaung (~8 cm depth in a ~15 cm radius object) and Raghunathpura (~12–14 cm depth in a ~25 cm object). We derived cosmic ray exposure ages of 1710 ± 256 Ma (for Nyaung, the highest reported so far for the IIIAB group) and 224 ± 34 Ma (for Raghunathpura). Variable amounts of trapped Kr and Xe were found in both meteorites. The phase Q‐like elemental ratio (84Kr/132Xe) suggests that the trapped component is of indigenous origin, and most likely hosted in the heterogeneously distributed micro‐inclusions of troilite/schreibersite. Trapped phase Q component is being reported for the first time, for a IIAB iron meteorite. Both meteorites showed light isotopic composition for nitrogen, and need at least two N components to explain the observed N isotopic systematic. Variable amounts of trapped noble gases and the presence of more than one N component suggest that the magmatic process that formed the parent body of these meteorites either could not completely homogenize or completely degas all the phases.  相似文献   

17.
Collisions between planetesimals were common during the first approximately 100 Myr of solar system formation. Such collisions have been suggested to be responsible for thermal processing seen in some meteorites, although previous work has demonstrated that such events could not be responsible for the global thermal evolution of a meteorite parent body. At this early epoch in solar system history, however, meteorite parent bodies would have been heated or retained heat from the decay of short‐lived radionuclides, most notably 26Al. The postimpact structure of an impacted body is shown here to be a strong function of the internal temperature structure of the target body. We calculate the temperature–time history of all mass in these impacted bodies, accounting for their heating in an onion‐shell–structured body prior to the collision event and then allowing for the postimpact thermal evolution as heat from both radioactivities and the impact is diffused through the resulting planetesimal and radiated to space. The thermal histories of materials in these bodies are compared with what they would be in an unimpacted, onion‐shell body. We find that while collisions in the early solar system led to the heating of a target body around the point of impact, a greater amount of mass had its cooling rates accelerated as a result of the flow of heated materials to the surface during the cratering event.  相似文献   

18.
Zak?odzie is an enstatite meteorite of unknown petrogenesis. Chemically, it resembles enstatite chondrites, but displays an achondrite‐like texture. Here we report on fabric and texture analyses of Zak?odzie utilizing X‐ray computed tomography and scanning electron microscopy and combine it with a nanostructural study of striated pyroxene by transmission electron microscopy. With this approach we identify mechanisms that led to formation of the texture and address the petrogenesis of the rock. Zak?odzie experienced a shock event in its early evolution while located at some depth inside a warm parent body. Shock‐related strain inverted pyroxene to the observed mixture of intercalated orthorhombic and monoclinic polymorphs. The heat that dissipated after the peak shock was added to primary, radiogenic‐derived heat and led to a prolonged thermal event. This caused local, equilibrium‐based partial melting of plagioclase and metal‐sulfide. Partial melting was followed by two‐stage cooling. The first phase of annealing (above 500 °C) allowed for crystallization of plagioclase and for textural equilibration of metal and sulfides with silicates. Below 500 °C, cooling was faster and more heterogeneous at cm scale, allowing retention of keilite and quenching of K‐rich feldspathic glass in some parts. Our study indicates that Zak?odzie is neither an impact melt rock nor a primitive achondrite, as suggested in former studies. An impact melt origin is excluded because enstatite in Zak?odzie was never completely melted and partial melting occurred during equilibrium‐based postshock conditions. Texturally, the rock represents a transition of chondrite and achondrite and was formed when early impact heat was added to internal radiogenic heat.  相似文献   

19.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

20.
We observed metamorphosed clasts in the CV3 chondrite breccias Graves Nunataks 06101, Vigarano, Roberts Massif 04143, and Yamato‐86009. These clasts are coarse‐grained polymineralic rocks composed of Ca‐bearing ferroan olivine (Fa24–40, up to 0.6 wt% CaO), diopside (Fs7–12Wo44–50), plagioclase (An52–75), Cr‐spinel (Cr/[Cr + Al] = 0.4, Fe/[Fe + Mg] = 0.7), sulfide and rare grains of Fe‐Ni metal, phosphate, and Ca‐poor pyroxene (Fs24Wo4). Most clasts have triple junctions between silicate grains. The rare earth element (REE) abundances are high in diopside (REE ~3.80–13.83 × CI) and plagioclase (Eu ~12.31–14.67 × CI) but are low in olivine (REE ~0.01–1.44 × CI) and spinel (REE ~0.25–0.49 × CI). These REE abundances are different from those of metamorphosed chondrites, primitive achondrites, and achondrites, suggesting that the clasts are not fragments of these meteorites. Similar mineralogical characteristics of the clasts with those in the Mokoia and Yamato‐86009 breccias (Jogo et al. 2012 ) suggest that the clasts observed in this study would also form inside the CV3 chondrite parent body. Thermal modeling suggests that in order to reach the metamorphosed temperatures of the clasts of >800 °C, the clast parent body should have accreted by ~2.5–2.6 Ma after CAIs formation. The consistency of the accretion age of the clast parent body and the CV3 chondrule formation age suggests that the clasts and CV3 chondrites could be originated from the same parent body with a peak temperature of 800–1100 °C. If the body has a peak temperature of >1100 °C, the accretion age of the body becomes older than the CV3 chondrule formation age and multiple CV3 parent bodies are likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号