首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Fine grained rodingite‐like rocks containing epidote, clinozoisite, garnet, chlorite, phengite and titanite occur within antigorite serpentinite boudins from the high‐pressure metamorphic Maksyutovo Complex in the Southern Urals. Pseudomorphs after lawsonite, resorption of garnet by chlorite and phengite and stoichiometry suggest the reaction lawsonite + garnet + K‐bearing fluid → clinozoisite + chlorite + phengite, and define a relic assemblage of lawsonite + garnet + chlorite + titanite ± epidote as well as a later post‐lawsonite assemblage of clinozoisite + phengite + chlorite + titanite. The reaction lawsonite + titanite → clinozoisite + rutile + pyrophyllite + H2O delimits the maximum stability of former lawsonite + titanite to pressures >13 kbar. P–T conditions of 18–21 kbar/520–540 °C result, if the average chlorite, Mg‐rich garnet rim and average epidote compositions are used as equilibrium compositions of the former lawsonite assemblage. These estimates indicate a similar depth of formation but lower temperatures to those recorded in nearby eclogites. The metamorphic conditions of the lawsonite assemblage are considerably higher than previously suggested and, together with published structural data, support a model in which a normal fault within the Maksyutovo complex acted as the major transport plane of eclogite exhumation. The maximum Si content of phengite and minimum Fe content in clinozoisite constrain the metamorphic conditions of the later pseudomorph assemblage to be >4.5 kbar and <440 °C. Rb–Sr isotopic dating of the pseudomorph assemblage results in a formation age of 339 ± 6 and 338 ± 5 Ma, respectively. These results support the recent exhumation models for this complex.  相似文献   

2.
High-grade exotic blocks in the Franciscan Complex at Jenner, California, show evidence for polydeformation/metamorphism, with eight distinct stages. Two parallel sets of mineral assemblages [(E) eclogite, and (BS) laminated blueschist] representing different bulk chemistry were identified. Stage 1, recorded by parallel aligned inclusions (S1) of crossite + omphacite + epidote + ilmenite + titanite + quartz (E), and glaucophane + actinolite + epidote + titanite (BS) in the central parts of zoned garnets, represents the epidote blueschist facies. The onset of a second stage (stage 2) is represented by a weak crenulation of S1 and growth of garnet. This stage develops a well-defined S2 foliation of orientated barroisite + epidote + titanite (E), or subcalcic actinolite + epidote + titanite (BS) at c. 90d? to S1, with syntectonic growth of garnet, defining the (albite-)epidote-amphibolite facies. A third stage, with aligned inclusions of glaucophane + (subcalcic) actinolite + phengite parallel to S2 in the outermost rims of large garnet grains, is assigned to the transitional (albite-)epidote-amphibolite/(garnet-bearing) epidote blueschist facies. The fourth stage represents the peak metamorphism, and was identified by unorientated matrix minerals in the least retrograded samples. In this stage the mineral assemblages garnet + omphacite + glaucophane + phengite (E) and garnet + winchite + phengite + epidote (BS) both represent the eclogite facies. Stage 5 is represented by the retrogression of eclogite facies assemblages to the epidote blueschist facies assemblages crossite/glaucophane + garnet + omphacite + epidote + phengite (E), and glaucophane + actinolite + epidote + phengite (BS), with the development of an S5 foliation subparallel to S2. Stage 6 represents a crenulation of S5, with the development of a well-defined S6 crenulation cleavage wrapping around relics of the eclogite facies assemblages. This crenulation cleavage is further weakly crenulated during a D7 event. Post-D7 (stage 8) is recorded by the growth of lawsonite + chlorite ± actinolite replacing garnet, and by veins of lawsonite + pumpellyite + aragonite and phengite + apatite. The different, yet coeval, mineral parageneses observed in rock types (E) and (BS) are probably due to differences in bulk chemistry. The metamorphic evolution from stage 1 to stage 8 seems to have been broadly continuous, following an anticlockwise P-Tpath: (1) epidote blueschist (garnet-free) to (2) (albite-)epidote-amphibolite to (3) transitional epidote blueschist (garnet-bearing)/(albite-)epidote-amphibolite to (4) eclogite to (5) epidote blueschist (garnet-bearing) to (6-7) epidote blueschist (garnet-free) facies to (8) lawsonite + pumpellyite + aragonite-bearing assemblages. This anticlockwise P-T path may have resulted from a decreasing geothermal gradient with time in the Mesozoic subduction zone of California at early or pre-Franciscan metamorphism.  相似文献   

3.
Pseudosections calculated with thermocalc predict that lawsonite‐bearing assemblages, including lawsonite eclogite, will be common for subducted oceanic crust that experiences cool, fluid‐saturated conditions. For glaucophane–lawsonite eclogite facies conditions (500–600 °C and 18–28 kbar), MORB compositions are predicted in the NCKMnFMASHO system to contain glaucophane, garnet, omphacite, lawsonite, phengite and quartz, with chlorite at lower temperature and talc at higher temperature. In these assemblages, the pyrope content in garnet is mostly controlled by variations in temperature, and grossular content is strongly controlled by pressure. The silica content in phengite increases linearly with pressure. As the P–T conditions for these given isopleths are only subtly affected by common variations in bulk‐rock compositions, the P–T pseudosections potentially present a robust geothermobarometric method for natural glaucophane‐bearing eclogites. Thermobarometric results recovered both by isopleth and conventional approaches indicate that most natural glaucophane–lawsonite eclogites (Type‐L) and glaucophane–epidote eclogites (Type‐E) record similar peak P–T conditions within the lawsonite stability field. Decompression from conditions appropriate for lawsonite stability should result in epidote‐bearing assemblages through dehydration reactions controlled by lawsonite + omphacite = glaucophane + epidote + H2O. Lawsonite and omphacite breakdown will be accompanied by the release of a large amount of bound fluid, such that eclogite assemblages are variably recrystallized to glaucophane‐rich blueschist. Calculated pseudosections indicate that eclogite assemblages form most readily in Ca‐rich rocks and blueschist assemblages most readily in Ca‐poor rocks. This distinction in bulk‐rock composition can account for the co‐existence of low‐T eclogite and blueschist in high‐pressure terranes.  相似文献   

4.
Robust quantification of pressure (P)–temperature (T) paths for subduction-related HP/UHP metamorphic rocks is fundamental in recognizing spatial changes in both the depth of detachment from the down-going plate and the thermal evolution of convergent margin sutures in orogenic belts. Although the Chinese southwestern (SW) Tianshan is a well-known example of an accretionary metamorphic belt in which HP/UHP metabasites occur in voluminous host metasedimentary schists, information about the P–T evolution of these rocks in the eastern segment is limited, precluding a full understanding of the development of the belt as a whole. In this study at Kekesu in the eastern segment of the SW Tianshan, we use microstructural evidence and phase equilibrium modelling to quantify the peak and retrograde P–T conditions from two lawsonite-bearing micaschists and an enclosed garnet–epidote blueschist; for two of the samples we also constrain the late prograde P–T path. In the two micaschist samples, relics of prograde lawsonite are preserved in quartz inclusions in garnet, whereas in the metabasite, polymineralic aggregates included in garnet are interpreted as pseudomorphs after lawsonite. For garnet micaschist TK21, which is mainly composed of garnet, phengite/paragonite, albite, chlorite, quartz and relict lawsonite, with accessary rutile, titanite and ilmenite, the maximum P–T conditions for the peak stage are 18.0–19.0 kbar at 480–485°C. During initial exhumation, the retrograde P–T path passed through metamorphic conditions of 15.0–17.0 kbar at 460–500°C. For garnet–glaucophane micaschist TK33, which is mainly composed of garnet, glaucophane, phengite/paragonite, albite, chlorite, quartz, relict lawsonite and minor epidote, with accessary titanite, apatite, ilmenite and zircon, the maximum P conditions for the peak stage are >24.0 kbar at 400–500°C. During exhumation, the P–T path passed through metamorphic conditions of 17.5–18.5 kbar at 485–495°C and 14.0–17.5 kbar at 460–500°C. For garnet–epidote blueschist TK37, which is mainly composed of garnet, glaucophane, epidote, phengite, chlorite, albite and quartz, with accessary titanite, apatite, ilmenite, zircon and calcite, the prograde evolution passed through metamorphic conditions of ~20.0 kbar at ~445°C to Pmax conditions of ~21.5 kbar at 450–460°C and Tmax conditions of 19.5–21.0 kbar at 490–520°C. During exhumation, the rock passed through metamorphic conditions of 17.5–19.0 kbar at 475–500°C, before recording P–T conditions of <17.5 kbar at <500°C. These results demonstrate that maximum recorded pressures for individual samples vary by as much as 6 kbar in the eastern segment of the SW Tianshan, which may suggest exhumation from different depths in the subduction channel. Furthermore, the three samples record similar P–T paths from ~17.0 to 15.0 kbar, which suggests they were juxtaposed at a similar depth along the subduction interface. We compare our new results with published information from eclogites in the same area before considering the wider implications of these data for the orogenic development of the belt as a whole.  相似文献   

5.
A new discovery of lawsonite eclogite is presented from the Lancône glaucophanites within the Schistes Lustrés nappe at Défilé du Lancône in Alpine Corsica. The fine‐grained eclogitized pillow lava and inter‐pillow matrix are extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive pillows and weakly foliated inter‐pillow matrix consist of zoned idiomorphic Mg‐poor (<0.8 wt% MgO) garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in the massive pillows are Mn rich, and show a regular prograde growth‐type zoning with a Mn‐rich core. In the inter‐pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several smaller crystallites. Matrix omphacite in both rock types is zoned with a rimward increase in XJd, locally with cores of relict augite. Numerous inclusions of clinopyroxene, lawsonite, chlorite and titanite are encapsulated within garnet in both rock types, and albite, quartz and hornblende are also found included in garnet from the inter‐pillow matrix. Inclusions of clinopyroxene commonly have augitic cores and omphacitic rims. The inter‐pillow matrix contains cross‐cutting omphacite‐rich veinlets with zoned omphacite, Si‐rich phengite (Si = 3.54 apfu), ferroglaucophane, actinolite and hematite. These veinlets are seen fracturing idiomorphic garnet, apparently without any secondary effects. Pseudosections of matrix compositions for the massive pillows, the inter‐pillow matrix and the cross‐cutting veinlets indicate similar P–T conditions with maximum pressures of 1.9–2.6 GPa at temperatures of 335–420 °C. The inclusion suite found in garnet from the inter‐pillow matrix apparently formed at pressures below 0.6–0.7 GPa. Retrogression during initial decompression of the studied rocks is only very local. Late veinlets of albite + glaucophane, without breakdown of lawsonite, indicate that the rocks remained in a cold environment during exhumation, resulting in a hairpin‐shaped P–T path.  相似文献   

6.
The Sivrihisar Massif, Turkey, is comprised of blueschist and eclogite facies metasedimentary and metabasaltic rocks. Abundant metre‐ to centimetre‐scale eclogite pods occur in blueschist facies metabasalt, marble and quartz‐rich rocks. Sivrihisar eclogite contains omphacite + garnet + phengite + rutile ± glaucophane ± quartz + lawsonite and/or epidote. Blueschists contain sodic amphibole + garnet + phengite + lawsonite and/or epidote ± omphacite ± quartz. Sivrihisar eclogite and blueschist have similar bulk composition, equivalent to NMORB, but record different P–T conditions: ~26 kbar, 500 °C (lawsonite eclogite); 18 kbar, 600 °C (epidote eclogite); 12 kbar, 380 °C (lawsonite blueschist); and 15–16 kbar, 480–500 °C (lawsonite‐epidote blueschist). Pressures for the Sivrihisar lawsonite eclogite are among the highest reported for this rock type, which is rarely exposed at the Earth's surface. The distribution and textures of lawsonite ± epidote define P–T conditions and paths. For example, in some lawsonite‐bearing rocks, epidote inclusions in garnet and partial replacement of matrix epidote by lawsonite suggest an anticlockwise P–T path. Other rocks contain no epidote as inclusions or as a matrix phase, and were metamorphosed entirely within the lawsonite stability field. Results of the P–T study and mapping of the distribution of blueschists and eclogites in the massif suggest that rocks recording different maximum P–T conditions were tectonically juxtaposed as kilometre‐scale slices and associated high‐P pods, although all shared the same exhumation path from ~9–11 kbar, 300–400 °C. Within the tectonic slices, alternating millimetre–centimetre‐scale layers of eclogite and blueschist formed together at the same P–T conditions but represent different extents of prograde reaction controlled by strain partitioning or local variations in fO2 or other chemical factors.  相似文献   

7.
Eclogites from the Onodani area in the Sambagawa metamorphic belt of central Shikoku occur as layers or lenticular bodies within basic schists. These eclogites experienced three different metamorphic episodes during multiple burial and exhumation cycles. The early prograde stage of the first metamorphic event is recorded by relict eclogite facies inclusions within garnet cores (XSps 0.80–0.24, XAlm 0–0.47). These inclusions consist of relatively almandine‐rich garnet (XSps 0.13–0.24, XAlm 0.36–0.45), aegirine‐augite/omphacite (XJd 0.08–0.28), epidote, amphiboles (e.g. actinolite, winchite, barroisite and taramite), albite, phengite, chlorite, calcite, titanite, hematite and quartz. The garnet cores also contain polyphase inclusions consisting of almandine‐rich garnet, omphacite (XJd 0.27–0.28), amphiboles (e.g. actinolite, winchite, barroisite, taramite and katophorite) and phengite. The peak P–T conditions of the first eclogite facies metamorphism are estimated to be 530–590 °C and 19–21 kbar succeeded by retrogression into greenschist facies. The second prograde metamorphism began at greenschist facies conditions. The peak metamorphic conditions are defined by schistosity‐forming omphacites (XJd ≤ 49) and garnet rims containing inclusions of barroisitic amphibole, phengite, rutile and quartz. The estimated peak metamorphic conditions are 630–680 °C and 20–22 kbar followed by a clockwise retrograde P–T path with nearly isothermal decompression to 8–12 kbar. In veins cross‐cutting the eclogite schistosity, resorbed barroisite/Mg‐katophorite occurs as inclusions in glaucophane which is zoned to barroisite, suggesting a prograde metamorphism of the third metamorphic event. The peak P–T conditions of this metamorphic event are estimated to be 540–600 °C and 6.5–8 kbar. These metamorphic conditions are correlated with those of the surrounding non‐eclogitic Sambagawa schists. The Onodani eclogites were formed by subduction of an oceanic plate, and metamorphism occurred beneath an accretionary prism. These high‐P/T type metamorphic events took place in a very short time span between 100 and 90 Ma. Plate reconstructions indicate highly oblique subduction of the Izanagi plate beneath the Eurasian continent at a high spreading rate. This probably resulted in multiple burial and exhumation movements of eclogite bodies, causing plural metamorphic events. The eclogite body was juxtaposed with non‐eclogitic Sambagawa schists at glaucophane stability field conditions. The amalgamated metamorphic sequence including the Onodani eclogites were exhumed to shallow crustal/surface levels in early Eocene times (c. 50 Ma).  相似文献   

8.
In the Chinese southwestern Tianshan (U)HP belt, former lawsonite presence has been predicted for many (U)HP metamorphic eclogites, but only a very few lawsonite grains have been found so far. We discovered armoured lawsonite relicts included in quartz, which, on its part, is enclosed in porphyroblastic garnet in an epidote eclogite H711‐14 and a paragonite eclogite H711‐29. H711‐14 is mainly composed of garnet, omphacite, epidote and titanite, with minor quartz, paragonite and secondary barroisite and glaucophane. Coarse‐grained titanite occasionally occurs in millimetre‐wide veins in equilibrium with epidote and omphacite, and relict rutile is only preserved as inclusions in matrix titanite and garnet. H711‐29 shows the mineral assemblage of garnet, omphacite, glaucophane, paragonite, quartz, dolomite, rutile and minor epidote. Dolomite and rutile are commonly rimed by secondary calcite and titanite respectively. Porphyroblastic garnet in both eclogites is compositionally zoned and exhibits an inclusion‐rich core overgrown by an inclusion‐poor rim. Phase equilibria modelling predicts that garnet cores formed at the P‐peak (490–505 °C and 23–25.5 kbar) and coexisted with the lawsonite eclogite facies assemblage of omphacite + glaucophane + lawsonite + quartz. Garnet rims (550–570 °C and ~20 kbar) grew subsequently during a post‐peak epidote eclogite facies metamorphism and coexisted with omphacite + quartz ± glaucophane ± epidote ± paragonite. The results confirm the former presence of a cold subduction zone environment in the Chinese southwestern Tianshan. The P–T evolution of the eclogites is characterized by a clockwise P–T path with a heating stage during early exhumation (thermal relaxation). The preservation of lawsonite in these eclogites is attributed to isolation from the matrix by quartz and rigid garnet, which should be considered as a new type of lawsonite preservation in eclogites. The complete rutile–titanite transition in H711‐14 took place in the epidote eclogite facies stage in the presence of an extremely CO2‐poor fluid with X(CO2) [CO2/(CO2 + H2O) in the fluid] <<0.008. In contrast, the incomplete rutile–titanite transition in H711‐29 may have occurred after the epidote eclogite facies stage and the presence of dolomite reflects a higher X(CO2) (>0.01) in the coexisting fluid at the epidote eclogite facies stage.  相似文献   

9.
In the southern Apennin (= northern part of the region dealt with) and the Coasta Chain (= southern part) there are metabasalts wich are classified in the northern part as:
  1. Glaucophane rocks of the albite-lawsonite-glaucophane-subfacies with the assemblage glaucophane + pumpellyite + lawsonite ±albite ±aragonite ±muscovite (7 rock analyses, 8 mineral analyses). These rocks are conceived as relics of an older burial metamorphism.
  2. Rocks with pumpellyite and chlorite or also chlorite alone, that are interpreted as reaction rims between the metastable glaucophane rocks and the country rock (phyllites, quartzites). The assemblages pumpellyite + chlorite and chlorite alone are to be found (2 rock analyses and 2 mineral analyses).
  3. Rocks with lawsonite and/or epidote belong to the same mineral facies as the country rock: a facies similar to the greenschist facies (called “lawsonite-albite-chlorite-subfacies”) which is characterized by the assemblages lawsonite + albite + chlorite ±calcite and also epidote ±lawsonite + albite + chlorite ± muscovite. These types are attributed to a younger dynamo-metamorphism (2 rock analyses).
In the southern part, the metabasalts can be found only as rocks with epidote and/or lawsonite, a metamorphism with more than one event cannot be proved petrologically (3 rock analyses). Equations of the observed mineral reactions are given. The transitions of one facies into another are represented in the pseudo-quaternary system Al2O3-CaO-Na2O · Al2O3-2 Fe2O3 + FeO + MnO + MgO-(H2O). The pressure-temperature conditions are estimated on the basis of published experimental data (300° C and 6–7 kb for the glaucophane rocks; 400° C and about 6 kb for the rocks with lawsonite and/or epidote) and are compared with geologic facts.  相似文献   

10.
The pumpellyite–actinolite facies proposed by Hashimoto is defined by the common occurrence of the pumpellyite–actinolite assemblage in basic schists. It can help characterize the paragenesis of basic and intermediate bulk compositions, which are common constituents of various low-grade metamorphic areas. The dataset of mutually consistent thermodynamic properties of minerals gives a positive slope for the boundary between the pumpellyite–actinolite and prehnite–pumpellyite facies in PT space. In the Sanbagawa belt in Japan, the mineral parageneses of hematite-bearing and -free basic schists, as well as pelitic schists have been well documented. The higher temperature limit of this facies is defined by the disappearance of the pumpellyite+epidote+actinolite+chlorite assemblage in hematite-free basic schists with XFe3+ of epidote around 0.20–0.25 and the appearance of epidote+actinolite+chlorite assemblage with XEpFe3+≤0.20. In hematite-bearing basic schists, there is a continuous change of paragenesis to higher grade, epidote–glaucophane or epidote–blueschist facies. In pelitic schists, the albite+lawsonite+chlorite assemblage does occur but only rarely, and its assemblage cannot be used to determine the regional thermal structure. The lower temperature equivalence of the pumpellyite–actinolite assemblage is not observed in the field. The Mikabu Greenstone complex and the northern margin of the Chichibu complex, which are located to the south of the Sanbagawa belt, are characterized by clinopyroxene+chlorite or lawsonite+actinolite assemblages, which are lower temperature assemblages than the pumpellyite+actinolite assemblage. These three metamorphic complexes belong to the same subduction-metamorphic complex. The pumpellyite–actinolite facies or subfacies can be useful to help reveal the field thermal structure of metamorphic complexes  相似文献   

11.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

12.
The high-pressure (HP) eclogite in the western Dabie Mountain encloses numerous hornblendes, mostly barroisite. Opinions on the peak metamorphic P-T condition, PT path and mineral paragenesis of it are still in dispute. Generally, HP eclogite involves garnet, omphacite, hornblendes and quartz, with or without glaucophane, zoisite and phengite. The garnet has compositional zoning with XMg increase, XCa and XMn decrease from core to rim, which indicates a progressive metamorphism. The phase equilibria of the HP eclogite modeled by the P-T pseudosection method developed recently showed the following: (1) the growth zonation of garnet records a progressive metamorphic PT path from pre-peak condition of 1.9–2.1 GPa at 508°C–514°C to a peak one of 2.3–2.5 GPa at 528°C–531°C for the HP eclogite; (2) the peak mineral assemblage is garnet+omphacite+glaucophane+quartz±phengite, likely paragenetic with lawsonite; (3) the extensive hornblendes derive mainly from glaucophane, partial omphacite and even a little garnet due to the decompression with some heating during the post-peak stage, mostly representing the conditions of about 1.4–1.6 GPa and 580°C–640°C, and their growth is favored by the dehydration of lawsonite into zoisite or epidote, but most of the garnet, omphacite or phengite in the HP eclogite still preserve their compositions at peak condition, and they are not obviously equilibrious with the hornblendes.  相似文献   

13.
Abstract The garnet blueschists from the Ile de Groix (Armorican Massif, France) contain millimetre‐ to centimetre‐sized pseudomorphs consisting of an aggregate of chlorite, epidote and paragonite. The pseudomorphed phase developed at a late stage of the deformation history, because it overgrows a glaucophane–epidote–titanite foliation. Garnet growth occurred earlier than the beginning of the ductile deformation, and thus garnet is also included in the pseudomorphs. Microprobe analyses show that garnet is strongly zoned, with decreasing spessartine and increasing almandine and pyrope contents from core to rim. Grossular content is higher in garnet cores (about 35 mole%) compared to garnet rims (about 30 mole%). Blue amphibole has glaucophane compositions with a low Fe3+ content and become more magnesian when inclusions in garnet (XMg = 0.62–0.65) are compared with matrix grains (XMg = 0.67–0.70). Matrix epidote has a pistacite content of about 50 mole%. On the basis of their shape and the nature of the breakdown products, the pseudomorphs are attributed to lawsonite. A numerical model (using Thermocalc ) has been developed in order to understand the reactions controlling both the growth and the breakdown of lawsonite. Lawsonite growth could have taken place through the continuous hydration reaction Chl + Ep + Pg + Qtz + Vap = Gln + Lws, followed by the fluid‐absent reaction Chl + Ep + Pg = Grt + Gln + Lws. Peak P–T conditions are estimated at about 18–20 kbar, 450 °C. This indicates that lawsonite growth took place at increasing P and T, hence can be used as a geobarometer in the buffering assemblage garnet–glaucophane–epidote. The final part of the history is recorded by lawsonite breakdown, after cessation of the ductile deformation, and recording the earliest stages of the exhumation.  相似文献   

14.
Glaucophane‐bearing ultrahigh pressure (UHP) eclogites from the western Dabieshan terrane consist of garnet, omphacite, glaucophane, kyanite, epidote, phengite, quartz/coesite and rutile with or without talc and paragonite. Some garnet porphyroblasts exhibit a core–mantle zoning profile with slight increase in pyrope content and minor or slight decrease in grossular and a mantle–rim zoning profile characterized by a pronounced increase in pyrope and rapid decrease in grossular. Omphacite is usually zoned with a core–rim decrease in j(o) [=Na/(Ca + Na)]. Glaucophane occurs as porphyroblasts in some samples and contains inclusions of garnet, omphacite and epidote. Pseudosections calculated in the NCKMnFMASHO system for five representative samples, combined with petrographic observations suggest that the UHP eclogites record four stages of metamorphism. (i) The prograde stage, on the basis of modelling of garnet zoning and inclusions in garnet, involves PT vectors dominated by heating with a slight increase in pressure, suggesting an early slow subduction process, and PT vectors dominated by a pronounced increase in pressure and slight heating, pointing to a late fast subduction process. The prograde metamorphism is predominated by dehydration of glaucophane and, to a lesser extent, chlorite, epidote and paragonite, releasing ~27 wt% water that was bound in the hydrous minerals. (ii) The peak stage is represented by garnet rim compositions with maximum pyrope and minimum grossular contents, and PT conditions of 28.2–31.8 kbar and 605–613 °C, with the modelled peak‐stage mineral assemblage mostly involving garnet + omphacite + lawsonite + talc + phengite + coesite ± glaucophane ± kyanite. (iii) The early decompression stage is characterized by dehydration of lawsonite, releasing ~70–90 wt% water bound in the peak mineral assemblages, which results in the growth of glaucophane, j(o) decrease in omphacite and formation of epidote. And, (iv) The late retrograde stage is characterized by the mineral assemblage of hornblendic amphibole + epidote + albite/oligoclase + quartz developed in the margins or strongly foliated domains of eclogite blocks due to fluid infiltration at P–T conditions of 5–10 kbar and 500–580 °C. The proposed metamorphic stages for the UHP eclogites are consistent with the petrological observations, but considerably different from those presented in the previous studies.  相似文献   

15.
通过对澜沧江杂岩带小黑江-上允地区蓝片岩的岩相学、地球化学、成因矿物学以及相平衡模拟的综合研究,阐述蓝片岩的原岩以及变质演化过程。地球化学分析结果显示,蓝片岩具有一致的稀土元素配分模式,具弱Eu正或负异常,稀土元素和微量元素特征与OIB相似,其原岩可能为OIB型玄武岩。详细矿物学研究表明,本区蓝片岩记录了俯冲峰期蓝片岩相变质和峰期后绿片岩相变质两个变质阶段,其矿物组合分别为蓝闪石+钠长石+多硅白云母+绿泥石+绿帘石和蓝闪石+钠长石±阳起石+绿泥石+绿帘石。通过Na_2O-Ca O-Fe O-MgO-Al_2O_3-SiO_2-H_2O-O体系相平衡计算,得到两个阶段的压力范围分别约为0.95 GPa和0.40 GPa。  相似文献   

16.
Chloritoid–glaucophane‐bearing rocks are widespread in the high‐pressure belt of the north Qilian orogen, NW China. They are interbedded and cofacial with felsic schists originated from greywackes, mafic garnet blueschists and low‐T eclogites. Two representative chloritoid–glaucophane‐bearing assemblages are chloritoid + glaucophane + garnet + talc + quartz (sample Q5‐49) and chloritoid + glaucophane + garnet + phengite + epidote + quartz (sample Q5‐12). Garnet in sample Q5‐49 is coarse‐, medium‐ and fine‐grained and shows two types of zonation patterns. In pattern I, Xgrs is constant as Xpy rises, and in pattern II Xgrs decreases as Xpy rises. Phase equilibrium modelling in the NC(K)MnFMASH system with Thermocalc 3.25 indicates that pattern I can be formed during progressive metamorphism in lawsonite‐stable assemblages, while pattern II zonation can be formed with further heating after lawsonite has been consumed. Garnet growth in Q5‐49 is consistent with a continuous progressive metamorphic process from ~14.5 kbar at 470 °C to ~22.5 kbar at 560 °C. Garnet in sample Q5‐12 develops with pattern I zonation, which is consistent with a progressive metamorphic process from ~21 kbar at 540 °C to ~23.5 kbar at 580 °C with lawsonite present in the whole garnet growth. The latter sample shows the highest PT conditions of the reported chloritoid–glaucophane‐bearing assemblages. Phase equilibrium calculation in the NCKFMASH system with a recent mixing model of amphibole indicates that chloritoid + glaucophane paragenesis does not have a low‐pressure limit of 18–19 kbar as previously suggested, but has a much larger pressure range from 7–8 to 27–30 kbar, with the low‐pressure part being within the stability field of albite.  相似文献   

17.
A low‐grade metamorphic “Coloured Mélange” in North Makran (SE Iran) contains lenses and a large klippe of low temperature, lawsonite‐bearing blueschists formed during the Cretaceous closure of the Tethys Ocean. The largest blueschist outcrop is a >1,000 m thick coherent unit with metagabbros overlain by interlayered metabasalts and metavolcanoclastic rocks. Blueschist metamorphism is only incipient in coarse‐grained rocks, whereas finer grained, foliated samples show thorough metamorphic recrystallization. The low‐variance blueschist peak assemblage is glaucophane, lawsonite, titanite, jadeite±phengitic mica. Investigated phase diagram sections of three blueschists with different protoliths yield peak conditions of ~300–380°C at 9–14 kbar. Magnesio‐hornblende and rutile cores indicate early amphibolite facies metamorphism at >460°C and 2–4 kbar. Later conditions at slightly higher pressures of 6–9 kbar at 350–450°C are recorded by barroisite, omphacite and rutile assemblages before entering into the blueschist facies and finally following a retrograde path through the pumpellyite–actinolite facies across the lawsonite stability field. Assuming that metamorphic pressure is lithostatic pressure, the corresponding counterclockwise P–T path is explained by burial along a warm geothermal gradient (~15°C/km) in a young subduction system, followed by exhumation along a cold gradient (~8°C/km); a specific setting that allows preservation of fresh undecomposed lawsonite in glaucophane‐bearing rocks.  相似文献   

18.
In Alpine Corsica (France), deeply subducted metabasalts are well preserved as lawsonite‐bearing eclogite (Law‐Ecl), occurrence of which is restricted to ~10 localities worldwide. The Corsican Law‐Ecl, consisting of omphacite + lawsonite + garnet + phengite + titanite, occurs as both single undeformed metabasaltic pillows surrounded by lawsonite blueschist (Law‐Bs), and carbonate‐bearing eclogitic veins. Law‐Bs are found as variably deformed metabasaltic pillows locally cross‐cut by eclogitic veins and consist of glaucophane + actinolite + lawsonite + garnet + phengite + titanite. Field evidence and microstructures reveal that both Law‐Ecl and Law‐Bs are stable at the metamorphic peak in the lawsonite‐eclogite stability field. Isochemical phase diagrams (pseudosections) calculated for representative Law‐Ecl and Law‐Bs samples indicate that both lithologies equilibrated at the same conditions of ~520 ± 20 °C and 2.3 ± 0.1 GPa. Therefore, the coexistence at the same peak metamorphic conditions of Law‐Ecl and Law‐Bs implies that different portions of deeply subducted oceanic crust may store significantly different H2O contents, depending on bulk‐rock chemical composition. In addition, thermodynamic modelling of phase equilibria indicates that the occurring progressive dehydration reactions, which are significantly depending on bulk‐rock chemical composition, strongly influence rock densification and eclogite formation in subducting slabs.  相似文献   

19.
Variations in chemistry and related physical properties of sheet silicates in the Ouégoa district with metamorphic grade are investigated. Weakly metamorphosed rocks prior to the crystallization of lawsonite contain phengite (d 006=3.317–3.323 Å), chlorite and occasionally paragonite while interstratified basaltic sills contain chlorite, minor phengite and stilpnomelane. Pyrophyllite crystallizes before lawsonite in some metamorphosed acid tuffs and is also stable in the lawsonite zone. Paragonite, phengite and chlorite appear to be stable through the sequence from weakly metamorphosed rocks into high-grade “eclogitic” schists and gneisses. Optical, chemical and some X-ray diffraction data is given for representative sheet silicates. Electron probe analyses of 55 phengites, 21 paragonites, 57 chlorites, 12 vermiculites, 2 stilpnomelanes, and 2 chloritoids are presented in graphical form. All K-micas analysed are consistently phengitic (3.29–3.55 Siiv ions per formula unit) and show limited solid solution with paragonite (4 to 13% Pa). The K∶Na ratio of the phengite is strongly dependant on the assemblage in which it occurs; the amount of phengite component and its Fe∶Mg ratio depends on bulk-rock composition. Phengites from acid volcanics have the highest Fe∶Mg ratio, highest phengite component and β refractive indices. Phengites from basic volcanics and metasediments of the epidote zone have the lowest Fe∶Mg ratio. Phengites from lawsonite-zone metasediments have intermediate Fe∶Mg ratios. The phengites show a small decrease in phengite component with increasing metamorphic grade. d 006 for phengites varied from 3.302 to 3.323 Å but at least in the lawsonite and epidote zones appears to reflect composition and had little systematic variation with metamorphic grade; phengites from very low-grade rocks showed the longest values of d 006. Paragonite shows almost no phengite-type substitution and only limited solid solution (4–12%) with muscovite. All paragonites (6) and most phengites (20) which have been examined are 2M1 polymorphs; one Fe2+-phengite appears to be a 1M polymorph. The chemistry of chlorites closely reflects parent-rock chemistry. Chlorites from metasediments have distinctly higher Fe/(Fe+Mg) ratios than chlorites from basic igneous rocks; chlorites from the lawsonite and lawsonite-epidote transitional zone metasediments have the highest Fe/(Fe+Mg) ratios. In metabasalts Fe/(Fe+Mg) ratios appear to reflect individual variations in bulk-rock chemistry and show no direct correlation with metamorphic grade. There is little difference in Al/(Si+Al) ratio between chlorites from sediments and basic igneous rocks although in both lithologies the chlorites from the epidote zone appear to be slightly more aluminous. Fe-rich chlorites of the lawsonite zone metasediments have been altered by a process involving leaching of Fe and Mg and introduction of alkalies to a brown pleochroic Fe-vermiculite. Chemical and physical data for this vermiculite are given. The decrease in Fe/(Fe+Mg) ratio in chlorites and phengites on passing from the lawsonite to the epidote zone can be correlated with the crystallization of Fe-rich epidote and almandine in the epidote zone. Elemental partitioning between coexisting minerals has shown Ti to be partitioned into phengite, while Fe and Mn are strongly partitioned into chlorite. When either stilpnomelane or chloritoid coexists with phengite or chlorite, Fe and Mn are slightly enriched in the stilpnomelane or chloritoid relative to the chlorite.  相似文献   

20.
A Cretaceous to low-Tertiary sequence of interbedded pelites, cherts, basic and acidic volcanics and calcareous lenses has been metamorphosed by an Oligocene event. A complete intergradational metamorphic sequence is exposed in the Ouégoa destrict. The following metamorphic zones have been recognised: — (1) lowest-grade rocks consisting of quartz-sericite phyllites and pumpellyite metabasalts (2) lawsonite zone, characterized by the association of lawsonite and albite (3) epidote zone, characterised by epidote-omphacite-sodic hornblendealmandine bearing metabasalts and epidote-albite-almandine-glaucophane bearing metasediments; calcareous metasediments may also carry omphacite. The epidote and lawsonite zones are separated by a narrow belt of transitional rocks. Garnets occur in metasediments throughout the lawsonite zone as rare tiny crystals (<0.03 mm diam.). Garnets first appear in metabasalts in lawsonite-epidote transitional rocks. Garnets are widespread and abundant in epidote-zone metasediments and metabasalts. 45 garnets from rocks representative of all lithologies and metamorphic grades have been analysed with an electron-probe microanalyser. The garnets were consistently zoned. Garnets in lawsonite and low-grade epidote zones show a “bell-type” zoning with cores enriched in Mn relative to Fe and rims enriched in Fe, Mg and frequently Ca. Garnets from high-grade epidote-zone metapelites and metabasalts show, in addition, a shallow oscillatory zoning with complimentary variations in Mn and Fe equivalent to 5 mole- % spessartine and almandine. The Fe-for-Mn substitutional zoning, believed to be caused by a diffusion/saturation effect similar to that of the Rayleigh fractional model (Hollister, 1966), appears to have had superimposed on it the effects of parent-rock chemistry and metamorphic grade which control in a complex manner the composition of the cores and the rims of garnets. Garnets from different rock types and metamorphic grade are compositionally distinct. Garnets from lawsonite-zone rocks, irrespective of parent-rock chemistry appear to be spessartine. Garnets from epidote-zone metaigneous rocks and most metasediments are almandine. Garnets from epidote-zone metasediments with bulk-rock compositions which are manganiferous, or have high oxidation ratios, or both, may be spessartine-rich. Garnets from metabasalts are consistently more pyropic in both core and rim compositions than garnets from pelitic metasediments; the pyrope content of cores and rims of garnets from equivalent rock types and mineral assemblages increases with increasing metamorphic grade. Cores of garnets from epidote-zone pelites are richer in grossular than garnets from lower-grade pelites. The reaction which brings almandine garnet into Ouégoa district blueschist assemblages simultaneously with the replacement of lawsonite by epidote involves components of chlorites and sodic amphiboles and can be represented by the following simplified equation: ferroglaucophane+Fe-rich chlorite+lawsonite → glaucophane+Mg-rich chlorite+epidote+almandine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号