首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystal structures of orthopyroxene (En86.3Fs8.6Wo5.1, space group Pbca) and pigeonite (En81.7Fs8.8Wo9.5, space group P21/c) from the Almahata Sitta ureilite (fragment#051) have been refined to R1 indices of 3.10% and 2.53%, respectively, using single-crystal X-ray diffraction data. The unit formulas were calculated from electron microprobe analysis, and the occupancies at the M1 and M2 sites were refined for both pyroxenes from the single-crystal diffraction data. The results indicate a rather disordered intracrystalline Fe2+-Mg cation distribution over the M1 and M2 sites, with a closure temperature of 726(±55)°C for orthopyroxene and 704(±110)°C for pigeonite, suggesting fast cooling of these pyroxenes. The Mössbauer spectrum of the Fe-Ni metal particles of Almahata Sitta ureilite (fragment#051) is dominated by two overlapping magnetic sextets that are assigned to Fe atoms in Si-bearing kamacite, and arise from two different nearest-neighbor configurations of Fe* (=Fe+Ni) and Si atoms in the bcc structure of kamacite; (8F*, 0Si) and (7Fe*, 1Si). In addition, the spectrum shows weak absorption peaks that are attributed to the presence of small amounts of cohenite [(Fe,Ni)3C], schreibersite [(Fe,Ni)3P], and an Fe-oxide/hydroxide phase. The fast cooling of pyroxene to the closure temperature (after equilibration at ~1200°C) and the incorporation of Si in kamacite can be interpreted as due to a shock event that took place on the meteorite parent body, consistent with the proposed formation history of ureilites parent body where a fast cooling has occurred at a later stage of its formation.  相似文献   

2.
Abstract— The Loxton meteorite is a single stone of 22 g found in South Australia in 1968. It has been classified as an L5 chondrite, shock facies ‘a,’ and contains olivine (Fa24), orthopyroxene (Fs21–22), clinopyroxene (Wo44.7En45.9Fs9.4), nickel-iron, troilite, chromite and chlorapatite.  相似文献   

3.
Abstract— Based on optical microscopy and electron microprobe analysis, Linum is classified as an L6b chondrite that contains olivine (Fa24), orthopyroxene (Fs20), clinopyroxene (Wo45En47Fs8), plagioclase (An10Ab84Or6), nickel-iron, troilite, chromite and accessory amounts of chlorapatite and whitlockite.  相似文献   

4.
Abstract— Frontier Mountain (FRO) 90054, from Antarctica, is a rare clino- and orthopyroxene-bearing ureilite with a coarse equigranular oriented texture (grains up to 3 mm); it is classified as a low-shock Ca-rich type. The crystal chemistry of its clinopyroxene (Wo39.3En54.6Fs6.1), orthopyroxene (En84 2Fs11Wo4.8) and olivine (Fa12.6Fo86.9) was investigated by single-crystal x-ray structural refinements and transmission electron microscope (TEM) observations to obtain data on the evolutionary history of the parent body. The M1 octahedron and unit cell volumes of the orthopyroxene and clinopyroxene are consistent with low-pressure crystallization. The closure temperatures for intracrystalline Mg-Fe2+ ordering yielded values of 674 °C and 804 °C for opx and 596 °C for cpx, which indicate high-temperature equilibration and fast cooling. Trasmission electron microscope investigations were performed on clinopyroxene, orthopyroxene and pigeonite. The (100) twin lamellae in the clinopyroxene and intergrowth of clino- and orthoenstatite lamellae in orthopyroxene most probably originated by deformation. Exsolution was not observed in any of the phases, which suggests rapid cooling. Analysis by TEM also revealed interstitial Na-rich glass and pigeonite with sharp h + k odd reflections and rare stacking faults parallel to (100). Textural and crystal chemical data, obtained by TEM, indicated rapid cooling that was probably due to fast radiative heat loss as a result of the disintegration of the parent body into small fragments, which subsequently reassembled into a larger body. One or more collisional events caused fine-scale stacking faults and partial melting.  相似文献   

5.
Abstract– The Grove Mountains (GRV) 021663 meteorite was collected from the Grove Mountains region of Antarctica. The meteorite is composed primarily of olivine (Fa5.4), orthopyroxene (Fs4.7Wo3.0), chromian diopside (En53.6Fs2.4Wo44), troilite, kamacite, and plagioclase (Ab74.5Or4An21.5). Minor phases include schreibersite and K‐feldspar. The meteorite is highly weathered (W3) and weakly shocked (S2). We determine a whole rock oxygen isotopic composition of δ18O = 7.50‰, δ17O = 3.52‰. Comparisons of these data with other primitive achondrites have resulted in the reclassification of this meteorite as a member of the winonaite group. The occurrences of troilite, metal, and schreibersite in GRV 021663 indicate that these minerals were once completely molten. Euhedral inclusions of pyroxene within plagioclase further suggest that these may have crystallized from a silicate melt, while the depletion of plagioclase, metal, and troilite indicates that GRV 021663 could represent a residuum following partial melting on its parent asteroid. Trace element distributions in silicate minerals do not, however, confirm this scenario. As with other winonaite meteorites, the formation of GRV 021663 probably relates to brecciation and mixing of heterogeneous lithologies, followed by varying degrees of thermal metamorphism on the parent body asteroid. Peak metamorphic conditions may have resulted in localized partial melting of metal and silicate mineralogies, but our data are not conclusive.  相似文献   

6.
Abstract— The Yaringie Hill meteorite is a new H5 ordinary chondrite found in the Gawler Ranges, South Australia. The meteorite, which shows only minor signs of terrestrial weathering, is predominantly composed of olivine (Fa17.2), orthopyroxene (Fs15.1Wo1.1), and three distinct phases of nickeliferous iron metal (kamacite, taenite, tetrataenite). Other minerals include troilite, plagioclase (Ab81An16Or3), clinopyroxene (En52Wo42Fs6), chlorapatite, merrillite, ilmenite, and native copper. Three types of spinel with distinctive textures (coarse, skeletal aggregates, rounded aggregates) and with compositions close to the join MgAl2O4‐FeCr2O4 are also present. Chondrules within the Yaringie Hill meteorite, which often have poorly defined boundaries, are placed in a recrystallized matrix. Shock indicators suggest that the meteorite experienced only weak shock metamorphism (S3).  相似文献   

7.
Northwest Africa (NWA) 10414 is an unusual shergottite with a cumulate texture. It contains 73% coarse prismatic pigeonite, plus 18% interstitial maskelynite, 2% Si‐rich mesostasis, 2% merrillite, and minor chromite‐ulvöspinel. It contains no olivine, and only ~3% augite. Phase compositions are pigeonite (En68‐43Fs27‐48Wo5‐15) and maskelynite An~54‐36, more sodic than most maskelynite in shergottites. Chromite‐ulvöspinel composition plots between the earliest and most fractionated spinel‐group minerals in olivine‐phyric shergottites. NWA 10414 mineralogically resembles the contact facies between Elephant Moraine 79001 lithologic units A and B, with abundant pigeonite phenocrysts, though it is coarser grained. Its most Mg‐rich pigeonite also has a similar composition to the earliest crystallized pyroxenes in several other shergottites, including Shergotty. The Shergotty intercumulus liquid composition crystallizes pigeonite with a similar composition range to NWA 10414 pigeonite, using PETROLOG. Olivine‐phyric shergottite NWA 6234, with a pure magma composition, produces an even better match to this pigeonite composition range, after olivine crystallization. These observations suggest that after the accumulation of olivine from an olivine‐phyric shergottite magma, the daughter liquid could precipitate pigeonite locally to form this pigeonite cumulate, before the crystallization of overlying liquid as a normal basaltic shergottite.  相似文献   

8.
Abstract— The Elephant Moraine A79002 (EETA79002) diogenite is a fragmental breccia with a subtle lightdark structure. It is composed of orthopyroxene, with minor olivine, chromite, and ubiquitous, inhomogeneously distributed, approximately 5–500 μm sized troilite and metal grains. These latter are present in the matrix, and as inclusions in and as symplectic intergrowths with orthopyroxene and olivine. Trace amounts of silica and diopside are also present. Most orthopyroxene compositions (typical orthopyroxenes) are in the narrow range Wo2.1–2.7En74.1–75.6Fs22.2–23.8 like those of most diogenites. A few magnesian orthopyroxenes are present with compositions of Wo1.7‐2.5En77.5–80.2 Fs18.2–20.3. These are among the most magnesian orthopyroxenes known from diogenites. A few ferroan orthopyroxenes have compositions of Wo2.1–2.9En71.7–73.7Fs24.2–25.5. Differences in Al2O3, TiO2, and Cr2O3 between the different orthopyroxene groups are inconsistent with a simple igneous fractionation relationship between them. Olivine compositions are Fo75.0–76.9. The olivines could be in equilibrium with the magnesian orthopyroxenes, but not with the typical or ferroan orthopyroxenes that form the bulk of EETA79002. Metal grains exhibit a range of Ni and Co contents and Ni/Co ratios; their compositions indicate that they are primary igneous metal. Metal and troilite grains are more prevalent in the dark samples. The trace incompatible lithophile element contents of 16 samples are remarkably uniform. Their Yb concentrations are all within their 2s? analytical uncertainties of the mean. The uniformity and low content of light rare earth elements in EETA79002 indicate that negligible amounts of a trapped liquid component, or foreign material mixed in the breccia, could be present. The siderophile and chalcophile element data show that the light‐dark structure is due to the distribution of metal and troilite grains; dark samples contain higher Ni, Co, and Se compared to light samples. Meteorite EETA79002 appears to contain material from three or more related plutons, a magnesian harzburgite, and two orthopyroxenites, and is a genomict breccia.  相似文献   

9.
Abstract— Dar al Gani 476, the 13th martian meteorite, was recovered from the Sahara in 1998. It is a basaltic shergottitic rock composed of olivine megacrysts reaching 5 mm (24 vol%) set in a finegrained groundmass of pyroxene (59 vol%) and maskelynitized plagioclase (12 vol%) with minor amounts of accessory phases (spinel, merrillite, ilmenite). Dar al Gani 476 is similar to lithology A of Elephant Moraine A79001 (EETA79001) in petrography and mineralogy, but is distinct in several aspects. Low‐Ca pyroxenes in the Dar al Gani 476 groundmass are more magnesian (En76Fs21 Wo3~En58Fs30Wo12) than those in lithology A of EETA79001 (En73Fs22Wo5~En45Fs43Wo12), rather similar to pyroxenes in lherzolitic martian meteorites (En76Fs21 Wo3~En63Fs22Wo15). Dar al Gani 476 olivine is less magnesian and shows a narrower compositional range (Fo76‐58) than EETA79001 olivine (Fo81‐53), and is also similar to olivines in lherzolitic martian meteorites (Fo74‐65). The orthopyroxene‐olivine‐chromite xenolith typical in the lithology A of EETA79001 is absent in Dar al Gani 476. It seems that Dar al Gani 476 crystallized from a slightly more primitive mafic magma than lithology A of EETA79001 and several phases (olivine, pyroxene, chromite, and ilmenite) in Dar al Gani 476 may have petrogenetic similarities to those of lherzolitic martian meteorites. Olivine megacrysts in Dar al Gani 476 are in disequilibrium with the bulk composition. The presence of fractured olivine grains in which the most Mg‐rich parts are in contact with the groundmass suggests that little diffusive modification of original olivine compositions occurred during cooling. This observation enabled us to estimate the cooling rates of Dar al Gani 476 and EETA79001 olivines, giving similar cooling rates of 0.03‐3 °C/h for Dar al Gani 476 and 0.05‐5 °C/h for EETA79001. This suggests that they were cooled near the surface (burial depth shallower than about 3 m at most), probably in lava flows during crystallization of groundmass. As is proposed for lithology A of EETA79001, it may be possible to consider that Dar al Gani 476 has an impact melt origin, a mixture of martian lherzolite and other martian rock (Queen Alexandra Range 94201, nakhlites?).  相似文献   

10.
The Loop meteorite was found in 1962 in Gaines County, Texas, at a location very close to that where the Ashmore chondrite was found in 1969. The two specimens were assumed to be fragments of the same meteorite. The Loop meteorite is a type L6 chondrite composed of olivine (Fo75.4Fa24.6), orthopyroxene (En77.6Wo1.5Fs20.9), clinopyroxene (En47.5Wo45.1Fs7.4), plagioclase (Ab84.3Or5.5An10.2), Fe-Ni metal, troilite, and chromite. Fe-Ni metal is represented by kamacite (5.8-6.4 wt % Ni, 0.88-1.00 wt % Co), taenite (30.0–52.9 wt % Ni, 0.16-0.34 wt % Co), and plessite (16.8–28.5 wt % Ni, 0.38-0.54 wt % Co). Native copper occurs as rare inclusions in Fe-Ni metal. Both chondrules and matrix have similar mineral compositions. The mineral chemistry of the Loop meteorite is quite different from that of the Ashmore, which was classified as an H5 chondrite by Bryan and Kullerud (1975). Therefore, the Ashmore and Loop meteorites are two different chondrites, even though they were recovered from the same geographic location.  相似文献   

11.
Abstract— A new olivine‐pigeonite ureilite containing abundant diamonds and graphite was found in the United Arab Emirates. This is the first report of a meteorite in this country. The sample is heavily altered, of medium shock level, and has a total weight of 155 g. Bulk rock, olivine (Fo79.8–81.8) and pyroxene (En73.9–75.2, Fs15.5–16.9, Wo8.8–9.5) compositions are typical of ureilites. Olivine rims are reduced with Fo increasing up to Fo96.1–96.8. Metal in these rims is completely altered to Fehydroxide during terrestrial weathering. We studied diamond and graphite using micro‐Raman and in situ synchrotron X‐ray diffraction. The main diamond Raman band (LO = TO mode at ?1332 cm?1) is broadened when compared to well‐ordered diamond single crystals. Full widths at half maximum (FWHM) values scatter around 7 cm?1. These values resemble FWHM values obtained from chemical vapor deposition (CVD) diamond. In situ XRD measurements show that diamonds have large grain sizes, up to >5 μm. Some of the graphite measured is compressed graphite. We explore the possibilities of CVD versus impact shock origin of diamonds and conclude that a shock origin is much more plausible. The broadening of the Raman bands might be explained by prolonged shock pressure resulting in a transitional Raman signal between experimentally shock‐produced and natural diamonds.  相似文献   

12.
The Beaver-Harrison, Utah chondrite (find July 24, 1979), a single, shock-veined stone of 925 grams, consists of major olivine (Fa25.0), low-Ca pyroxene (En77.3Fs21.1Wo1.6) and metallic nickel-iron; minor troilite and plagioclase (Ab82.6An11.1Or6.3), accessory high-Ca pyroxene (En47.0Fs8.5Wo44.5), chromite (Cm8.7Sp10.6Uv9.4Pc0.6Hc0.7), chlorapatite and whitlockite; and hydrous ferric oxide of terrestrial weathering origin. Mineral compositions indicate L-group classification, and homogeneity of minerals, highly recrystallized texture and presence of clear plagioclase suggest that the meteorite belongs to petrologic type 6.  相似文献   

13.
Abstract– Northwest Africa (NWA) 4797 is an ultramafic Martian meteorite composed of olivine (40.3 vol%), pigeonite (22.2%), augite (11.9%), plagioclase (9.1%), vesicles (1.6%), and a shock vein (10.3%). Minor phases include chromite (3.4%), merrillite (0.8%), and magmatic inclusions (0.4%). Olivine and pyroxene compositions range from Fo66–72,En58–74Fs19–28Wo6–15, and En46–60Fs14–22Wo34–40, respectively. The rock is texturally similar to “lherzolitic” shergottites. The oxygen fugacity was QFM?2.9 near the liquidus, increasing to QFM?1.7 as crystallization proceeded. Shock effects in olivine and pyroxene include strong mosaicism, grain boundary melting, local recrystallization, and pervasive fracturing. Shock heating has completely melted and vesiculated igneous plagioclase, which upon cooling has quench‐crystallized plagioclase microlites in glass. A mm‐size shock melt vein transects the rock, containing phosphoran olivine (Fo69–79), pyroxene (En44–51Fs14–18Wo30–42), and chromite in a groundmass of alkali‐rich glass containing iron sulfide spheres. Trace element analysis reveals that (1) REE in plagioclase and the shock melt vein mimics the whole rock pattern; and (2) the reconstructed NWA 4797 whole rock is slightly enriched in LREE relative to other intermediate ultramafic shergottites, attributable to local mobilization of melt by shock. The shock melt vein represents bulk melting of NWA 4797 injected during pressure release. Calculated oxygen fugacity for NWA 4797 indicates that oxygen fugacity is decoupled from incompatible element concentrations. This is attributed to subsolidus re‐equilibration. We propose an alternative nomenclature for “lherzolitic” shergottites that removes genetic connotations. NWA 4797 is classified as an ultramafic poikilitic shergottite with intermediate trace element characteristics.  相似文献   

14.
Northwest Africa (NWA) 1950 is a new member of the lherzolitic shergottite clan of the Martian meteorites recently found in the Atlas Mountains. The petrological, mineralogical, and geochemical data are very close to those of the other known lherzolitic shergottites. The meteorite has a cumulate gabbroic texture and its mineralogy consists of olivine (Fo66 to Fo75), low and high‐Ca pyroxenes (En78Fs19Wo2‐En60Fs26W14; En53Fs16Wo31‐En45Fs14Wo41), and plagioclase (An57Ab41Or1 to An40Ab57Or3; entirely converted into maskelynite during intense shock metamorphism). Accessory minerals include phosphates (merrillite), chromite and spinels, sulfides, and a glass rich in potassium. The oxygen isotopic values lie on the fractional line defined by the other SNC meteorites (Δ17O = 0.312 %o). The composition of NWA 1950 is very similar to the other lherzolitic shergottites and suggests an origin from the same magmatic system, or at least crystallization from a close parental melt. Cosmogenic ages indicate an ejection age similar to those of the other lherzolitic shergottites. The intensity of the shock is similar to that observed in other shergottites, as shown by the occurrence of small melt pockets containing glass interwoven with stishovite.  相似文献   

15.
Abstract— We have performed petrologic and geochemical studies of Patuxent Range (PAT) 91501 and Lewis Cliff (LEW) 88663. PAT 91501, originally classified as an L7 chondrite, is rather a unique, near total impact melt from the L‐chondrite parent body. Lewis Cliff 88663 was originally classified as an “achondrite (?)”, but we find that it is a very weakly shocked L7 chondrite. PAT 91501 is an unshocked, homogeneous, igneous‐textured ultramafic rock composed of euhedral to subhedral olivine, low‐Ca pyroxene, augite and chrome‐rich spinels with interstitial albitic plagioclase and minor silica‐alumina‐alkali‐rich glass. Only ~10% relic chondritic material is present. Olivine grains are homogeneous (Fa25.2–26.8). Low‐Ca pyroxene (Wo1.9–7.2En71.9–78.2Fs19.9–20.9) and augite (Wo29.8–39.0En49.2–55.3Fs11.8–14.9) display a strong linear TiO2‐Al2O3 correlation resulting from igneous fractionation. Plagioclase is variable in composition; Or3.0–7.7Ab79.8–84.1An8.2–17.2.‐Chrome‐rich spinels are variable in composition and zoned from Cr‐rich cores to Ti‐Al‐rich rims. Some have evolved compositions with up to 7.9 wt% TiO2. PAT 91501 bulk silicate has an L‐chondrite lithophile element composition except for depletions in Zn and Br. Siderophile and chalcophile elements are highly depleted due to sequestration in centimeter‐size metal‐troilite nodules. The minerals in LEW 88663 are more uniform in composition than those in PAT 91501. Olivine grains have low CaO and Cr2O3 contents similar to those in L5–6 chondrites. Pyroxenes have high TiO2 contents with only a diffuse TiO2‐Al2O3 correlation. Low‐Ca pyroxenes are less calcic (Wo1.6–3.1En76.5–77.0Fs20.4–21.4), while augites (Wo39.5–45.6En46.8–51.1Fs7.6–9.4) and plagioclases (Or2.6–5.7Ab74.1–83.1An11.2–23.3) are more calcic. Spinels are homogeneous and compositionally similar to those in L6 chondrites. LEW 88663 has an L‐chondrite bulk composition for lithophile elements, and only slight depletions in siderophile and chalcophile elements that are plausibly due to weathering and/or sample heterogeneity.  相似文献   

16.
Abstract— MÖssbauer spectroscopy, x-ray diffraction (XRD) measurements, and electron microprobe analysis (EMPA) have been carried out for the investigation of a newly fallen Sudanese meteorite named New Haifa. The room temperature MÖssbauer spectrum is fitted with three sextets and two doublets. The sextets are assigned to Fe in troilite, kamacite, and taenite, and the two doublets are assigned to Fe2+in olivine and pyroxene (no Fe3+was found). The microprobe trace of Ni concentration across a kamacite-taenite-kamacite area shows a high-Ni concentration at the interfaces between kamacite and taenite. From the microprobe analysis, olivine appears to have a constant composition, whereas pyroxene has a varying composition. The mole fractions of the Fe end members of olivine (fayalite) and pyroxene (ferrosilite) are found to be 23.5% and 23.2%, respectively. Accordingly, the New Haifa meteorite is classified as an ordinary L-type chondrite.  相似文献   

17.
Abstract— The Nova 001 [= Nuevo Mercurio (b)] and Nullarbor 010 meteorites are ureilites, both of which contain euhedral graphite crystals. The bulk of the meteorites are olivine (Fo79) and pyroxenes (Wo9En73Fs18, Wo3En77Fs20), with a few percent graphite and minor amounts of troilite, Ni-Fe metal, and possibly diamond. The rims of olivine grains are reduced (to Fo91) and contain abundant blebs of Fe metal. Silicate mineral grains are equant, anhedral, up to 2 mm across, and lack obvious preferred orientations. Euhedral graphite crystals (to 1 mm x 0.3 mm) are present at silicate grain boundaries, along boundaries and protruding into the silicates, and entirely within silicate mineral grains. Graphite euhedra are also present as radiating clusters and groups of parallel plates grains embedded in olivine; no other ureilite has comparable graphite textures. Minute lumps within graphite grains are possibly diamond, inferred to be a result of shock. Other shock effects are limited to undulatory extinction and fracturing. Both ureilites have been weathered significantly. Considering their similar mineralogies, identical mineral compositions, and identical unusual textures, Nova 001 and Nullarbor 010 are probably paired. Based on olivine compositions, Nova 001 and Nullarbor 010 are in Group 1 (FeO-rich) of Berkley et al. (1980). Silicate mineral compositions are consistent with those of other known ureilites. The presence of euhedral graphite crystals within the silicate minerals is consistent with an igneous origin, and suggests that large proportions of silicate magma were present locally and crystallized in situ.  相似文献   

18.
Abstract— A stony meteorite fell near the Fuc Bin village, Vietnam, in July, 1971. Based on optical microscopy, scanning electron microscopy and electron probe microanalysis, the meteorite is classified as an L5 chondrite that contains olivine (Fa23.6), low-Ca pyroxene (Fs20.3 Wo1.3), high-Ca pyroxene (Fs7.5 Wo44.2), plagioclase (Ab83.8 Or5), chlorapatite, merrillite and opaque minerals: chromite, troilite, kamacite, taenite, tetrataenite and native copper.  相似文献   

19.
Abstract— An improvement in the velocity resolution and quality of Mössbauer spectra has been applied to a group of ordinary chondrites. This improvement permitted us to carry out a more detailed study of the iron bearing phases in these samples than has previously been possible. Mössbauer spectra of 11 ordinary chondrites of L and H chemical groups were measured using 4096 channels and presented for further analysis in 1024 channels. Subspectra of the metal grains of several chondrites demonstrated the presence of at least two magnetic sextets related to the main Fe(Ni, Co) phases. Moreover, Mössbauer study of extracted metal grains from Tsarev L5 revealed three sextets and one singlet spectral components related to various α‐Fe(Ni, Co), α‘‐Fe(Ni, Co), α2‐Fe(Ni, Co), and γ‐Fe(Ni, Co) phases. Each subspectrum of olivine and pyroxene in Mössbauer spectra of ordinary chondrites was fitted by superposition of two quadrupole doublets related to M1 and M2 sites in minerals for the first time. An analysis of relative areas and Mössbauer hyperfine parameters was performed and some differences for L and H chondrites as well as for M1 and M2 sites were observed. Mössbauer parameters of troilite and oxidized iron were analyzed. In contrast to a previous study with 512‐channel spectra, the presence of oxidized iron was found in all chondrites.  相似文献   

20.
Abstract— We report on the petrology and geochemistry of Northwest Africa (NWA) 4215, an unbrecciated diogenite recovered in the Sahara. This single stone, weighing 46.4 g, displays a wellpreserved cumulative texture. It consists of zoned xenomorphic orthopyroxene grains on the order of 500 μm in size, along with a few large chromite crystals (<5 vol%, up to 3 mm). Accessory olivine and scarce diopside grains occur within the groundmass, usually around the chromite crystals. Minor phases are cristobalite, troilite, and metal. Unlike other diogenites, orthopyroxenes (En76.2Wo1.1Fs22.7 to En68.6Wo5.5Fs25.9), olivines (Fo76 to Fo71), and chromites (Mg# = 14.3 44.0, Cr# = 42.2–86.5) are chemically zoned. The minor element behavior in orthopyroxenes and the intricate chemical profiles obtained in chromites indicate that the zonings do not mirror the evolution of the parental melt. We suggest that they resulted from reaction of the crystals with intercumulus melt. In order to preserve the observed zoning profiles, NWA 4215 clearly cooled significantly faster than other diogenites. Indeed, the cooling rate determined from the diffusion of Cr in olivine abutting chromite is in the order of 10–50 °C/a, suggesting that NWA 4215 formed within a small, shallow intrusion. The bulk composition of NWA 4215 has been determined for major and trace elements. This meteorite is weathered and its fractures are filled with calcite, limonite, and gypsum, typical of hot desert alteration. In particular, the FeO, CaO abundances and most of the trace element concentrations (Sr, Ba, Pb, and REE among others) are high and indicate a significant contribution from the secondary minerals. To remove the terrestrial contribution, we have leached with HCl a subsample of the meteorite. The residue, made essentially of orthopyroxene and chromite, has similar major and trace element abundances to diogenites as shown by the shape of its REE pattern or by its high Al/Ga ratio. The connection of NWA 4215 with diogenites is confirmed by its O‐isotopic composition (δ17O = 1.431 ± 0.102‰, δ18O = 3.203 ± 0.205‰, Δ17O = ?0.248 ± 0.005‰).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号