首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solar wind is a magnetized flowing plasma that intersects the Earth's magnetosphere at a velocity much greater than that of the compressional fast mode wave that is required to deflect that flow. A bow shock forms that alters the properties of the plasma and slows the flow, enabling continued evolution of the properties of the flow on route to its intersection with the magnetopause. Thus the plasma conditions at the magnetopause can be quite unlike those in the solar wind. The boundary between this “magnetosheath” plasma and the magnetospheric plasma is many gyroradii thick and is surrounded by several boundary layers. A very important process occurring at the magnetopause is reconnection whereby there is a topological change in magnetic flux lines so that field lines can connect the solar wind plasma to the terrestrial plasma, enabling the two to mix. This connection has important consequences for momentum transfer from the solar wind to the magnetosphere. The initiation of reconnection appears to be at locations where the magnetic fields on either side of the magnetopause are antiparallel. This condition is equivalent to there being no guide field in the reconnection region, so at the reconnection point there is truly a magnetic neutral or null point. Lastly reconnection can be spatially and temporally varying, causing the region of the magnetopause to be quite dynamic.  相似文献   

2.
The plasma flow in the equatorial plane of the magnetosphere is examined within the framework of a one-dimensional model in which all quantities are supposed to depend only on the distance along the Sun-Earth axis. The following models are considered: (1) the gasdynamical model in which the Ampère force is ignored, (2) the magnetohydrodynamical model in which the normal component of the Ampère force on the magnetopause is taken into account. The flow regime is calculated in the region including two regions: (1) the layer of the return flow where flow velocity is directed from the Sun, (2) the region of convection where the velocity is directed toward the Sun - on the assumption that the form of the magnetopause and the distribution of the solar wind pressure on the magnetopause are known.The following physical mechanisms are taken into account: (1) the appearance of a centrifugal force owing to the magnetopause curvature, the centrifugal force partly compensating for the solar wind pressure; (2) the existence of the critical point which is analogous to the point of transition through the local sound velocity in the Laval nozzle or in the Parker model of the solar corona. The thickness of the layer of the return flow and the velocity of convection in the magnetosphere are calculated; and the following peculiarities are found: (1) in the gasdynamical model the convection regime is only possible with high velocities corresponding to the substorm, (2) in the magnetohydrodynamic model the convection velocity and the thickness of the layer of the return flow are reduced; the reduction being connected to the fact that the pressure of the solar wind is partially compensated for by the jump of the magnetic pressure on the magnetopause.  相似文献   

3.
《Planetary and Space Science》1987,35(10):1317-1321
In this study a method is outlined which is capable of giving neutral temperatures and height changes in the aurora when the molecular emissions originate from the E-region.Absolute spectrometric measurements of N2+ 1NG and O2+ 1NG bands and the auroral green line are performed in a nightside aurora. Rotational temperatures and band intensities are deduced by a least-squares fit of synthetic spectra to observations. There is a close correlation between the variations in rotational temperatures and the relative intensity ratio of N2+ 1NG(0,3) and O2+ 1NG(1,0) bands. The change in the relative intensity ratio is similar to the intensity variation predicted by the changing N2 and O2 densities from 120 to 150 km, obtained from the MSIS 83 model atmosphere, and the derived neutral temperature variations are consistent with a similar change in emission height of the aurora. Therefore the changing temperature is most likely due to a changing emission height of the aurora, and no local heating can be inferred.  相似文献   

4.
A numerical method called the pressure comparison method is proposed for the theoretical magnetopause shape calculation and tested in an assumed situation in which the external plasma pressure is constant and homogeneous over the magnetopause. The results are consistent with that of previous researchers.  相似文献   

5.
The way is discussed by which microinstabilities of an exact charge neutral magnetopause could lead to a trapped particle flow, the absence of which causes the non-existence of an equilibrium magnetospheric boundary layer in the Parker-Lerche model. Furthermore, it is argued that instead of the non-equilibrium effect of Parker and Lerche, microinstabilities of an exact charge neutral magnetopause might be the underlying physical process of an Axford and Hines' type viscous interaction.  相似文献   

6.
A recent discovery from the Big Bear Solar Observatory has linked the cancellation of opposite polarity magnetic fragments in the photosphere (i.e., so-called cancelling magnetic features) to X-ray bright points and has stimulated the setting up of a converging flux model for the process. Cancelling magnetic features can occur between magnetic fragments of differing strengths in many different situations. Here, therefore, we model two opposite polarity fragments of different strengths in the photosphere by two unequal sources in an overlying uniform field. Initially in thepre-interaction phase these sources are assumed to be unconnected, but as they move closer together theinteraction phase starts with an X-type neutral point forming, initially on the photosphere, then rising up into the chromosphere and corona before lowering back down to the photosphere. Thecapture phase then follows with the sources fully connected as they move together. Finally, after they come in to contact, during thecancellation phase the weaker source is cancelled by part of the stronger source. The height of the X-type neutral point varies with the separation of the sources and the ratio of the source strengths, as do the positions of the neutral points before connection and after complete reconnection of the two sources. The neutral point is the location of magnetic reconnection and therefore energy release which is believed to power the X-ray bright point in the corona. By using a current sheet approximation, where it is assumed no reconnection takes place as the two sources move together, the total amount of energy released during reconnection may be estimated. The typical total free magnetic energy is found to be of the order of 1020–1021 J, which is as required for an X-ray bright point. It is also found that, as the ratio of the source strengths increases, the height of the X-type neutral point decreases, as do the total energy released, and the lifetime of the bright point.  相似文献   

7.
Model calculations of the S-component are compared with observations of the RATAN-600 telescope at five discrete microwave frequencies referring to active region McMath No. 15974 on May 1, 1979. The spectral variations of source diameter, flux density, and degree of polarization are used to derive the height scale of the magnetic field in accordance with a magnetic dipole distribution under the assumption of advanced temperature and electron density distributions according to most recent EUV observations.  相似文献   

8.
A theoretical model is proposed for the interaction of a plane discontinuity in the solar wind with the magnetosphere. The presence of the bow shock and magnetosheath are taken into account, the calculation being based on the Spreiter et al. (1966) gas-dynamic model for a solar wind Mach Number M = 5. The model proposed predicts the manner in which the shape of the interplanetary discontinuity is distorted in its passage through the magnetosheath; it is found that the point of first impact with the magnetopause makes an angle of 56° with the Sun-Earth line for relatively quiet solar wind conditions.  相似文献   

9.
A simple method is proposed to investigate the stability of a charge neutral magnetopause current sheet with respect to the tearing-mode instability. This method may serve as a useful tool in understanding the processes of local opening of the closed magnetosphere.  相似文献   

10.
The passage of Ulysses through Jupiter's magnetosphere presents a new opportunity to investigate the contribution to the Jovian magnetosphere of ions of atmospheric origin. A determination of the magnetospheric H+/He2+ flux ratio allows an estimate of the relative abundance of ionospheric material in the Jovian magnetosphere. We find that the H+/He2+ flux ratio, measured in the energy/charge range between 0.65 and 60 keV/e, steadily increases from a solar wind level of 25 at the magnetopause to a value of 700 at the point of closest approach, and then steadily decreases whilst approaching the magnetopause on the outbound path. We conclude from this that: (1) there is a significant solar wind component throughout the outer and middle magnetosphere; and (2) a significant fraction of the protons in the middle magnetosphere are of nonsolar origin.  相似文献   

11.
The existence of a critical height for quiescent prominences and its relationship to parameters of the magnetic field of photospheric sources are discussed. In the inverse-polarity model, stable equilibrium of a filament with a current is possible only in the region where the external field decreases with height no faster than ~1/h. Calculations of the potential magnetic field above the polarity-inversion line are compared with the observed prominence height. The prominence height is shown to actually depend on the vertical field gradient and does not exceed the level at which the exponent of field decrease is equal to unity.  相似文献   

12.
The wide-spread belief that the neutral sheet current in Earth's magnetotail creates an accumulation of charge at the boundary with the magnetosheath is erroneous. Current continuity is maintained by the magnetization current on the upper and lower surfaces of the magnetotail. Hence no electric fields arise from charge separation supposedly brought about by the flow of particles between the neutral sheet and the magnetosheath. Claims to the contrary are based on the oversight of forgetting the current on the magnetopause.  相似文献   

13.
The reflection and refraction of MHD waves through an “open” magnetopause (rotational discontinuity) is studied. It is found that most of the incident wave energy can be transmitted through the open magnetopause. A transverse Alfvén wave (or a compressional magnetosonic wave) from the solar wind incident upon the open magnetopause would generally lead to the generation of both the transverse Alfvén and compressional magnetosonic waves in the magnetosphere. Transmission of Alfvén waves in the coplanar rotational discontinuity is studied in detail. The integral power of the Alfvén-wave transfer is found to be proportional to the open magnetic flux of the magnetosphere and is typically ~ 1% of the power of the total electromagnetic energy transfer through the open magnetopause. The transmitted wave power may contribute significantly to the geomagnetic pulsations observed on the ground, especially in the open-field-line region.  相似文献   

14.
The polar cusps have traditionally been described as narrow funnel-shaped regions of magnetospheric magnetic field lines directly connected to magnetosheath, allowing the magnetosheath plasma to precipitate into the ionosphere. However, recent observations and theoretical considerations revealed that the formation of the cusp cannot be treated separately from the processes along the whole dayside magnetopause and that the plasma in regions like cleft or low-latitude boundary layer is of the same origin. Our review of statistical results as well as numerous case studies identified the anti-parallel merging at the magnetopause as the principal source of the magnetosheath plasma in all altitudes. Since effective merging requires a low plasma speed at the reconnection spot, we have found that the magnetopause shape and especially its indentation at the outer cusp is a very important part of the whole process. The plasma is slowed down in this indentation and arising multiscale turbulent processes enhance the reconnection rate.  相似文献   

15.
The geometry of the open field line region in the polar region is computed for a variety of the interplanetary magnetic field (IMF) orientation. The open field line region can be identified as the area bounded by the auroral oval, namely the polar cap. The polar cap geometry varies considerably with the orientation of the IMF and magnitude, particularly when the IMF Bz component is positive and large. The corresponding exit points of the open field lines on the magnetopause are also examined. The results will be a useful guide in interpreting various upper atmospheric phenomena in the highest latitude region of the Earth and also in observing chemical releases outside the magnetopause.  相似文献   

16.
We have obtained spectroscopic observations in coronal emission lines by choosing two lines simultaneously, one [Fe x] 6374 Å and the other [Fe xi] 7892 Å or [Fe xiii] 10747 Å or [Fe xiv] 5303 Å. We found that in 95 per cent of the coronal loops observed in 6374 Å, the FWHM of the emission line increases with height above the limb irrespective of the size, shape and orientation of the loop and that in case of 5303 Å line decreases with height in about 89 per cent of the coronal loops. The FWHM of 7892 Å and 10747 Å emission lines show intermediate behavior. The increase in the FWHM of 6374 Å line with height is the steepest among these four lines. We have also studied the intensity ratio and ratio of FWHM of these lines with respect to those of 6374 Å as a function height above the limb. We found that the intensity ratio of 7892 Å and 10747 Å lines with respect to 6374 Å line increases with height and that of 5303 Å to 6374 Å decreases with height above the limb. This implies that temperature in coronal loops will appear to increase with height in the intensity ratio plots of 7892 Å and 6374 Å; and 10747 Å and 6374 Å whereas it will appear to decrease with height in intensity ratio of 5303 Å to 6374 Å lineversus height plot. These findings are up to a height of about 200 arcsec above the limb. The varying ratios with height indicate that relatively hotter and colder plasma in coronal loops interact with each other. Therefore, the observed increase in FWHM with height above the limb of coronal emission lines associated with plasma at about 1 MK may not be due to increase in non-thermal motions caused by coronal waves but due to interaction with the relatively hotter plasma. These findings also do not support the existing coronal loop models, which predict an increase in temperature of the loop with height above the limb.  相似文献   

17.
We have made calculations for the variation of equivalent width with phase angle (for a Venus-like atmosphere except that the cloud particles scatter isotropically). The effect of temperature variations, within our model atmosphere, is shown to be small. The effect of changing the scale height of the cloud relative to the scale height of the gas is much larger.  相似文献   

18.
Conditions for the development of Kelvin-Helmholtz (K-H) waves on the magnetopause have been known for more than 15 years; more recently, spacecraft observations have stimulated further examination of the properties of K-H waves. For amagnetopause with no boundary layer, two different modes of surface waves have been identified and their properties have been investigated for various assumed orientations of magnetic field and flow velocity vectors. The power radiated into the magnetosphere from the velocity shear at the boundary has been estimated. Other calculations have focused on the consequences of finite thickness boundary layers, both uniform and non-uniform. The boundary layer is found to modify the wave modes present at the magnetopause and to yield a criterion for the wavelength of the fastest growing surface waves. The paper concludes by questioning the extent to which the inferences from boundary layer models are model dependent and identifies areas where further work is needed or anticipated.  相似文献   

19.
Nearly 1000 magnetopause crossings from HEOS-2, HEOS-1, OGO-5 and 5 IMP space-craft covering most of the northern and part of the southern dayside and near-Earth tail magnetopause (X >?15 RE) have been used to perform a detailed study of the three-dimensional shape and location of the magnetopause. The long-term influence of the solar wind conditions on the average magnetopause geometry has been reduced by normalising the radial distances of the observed magnetopause crossings to an average dynamical solar wind pressure. Best-fit ellipsoids have been obtained to represent the average magnetopause surface in geocentric solar ecliptic (GSE) and (as a function of tilt angle) in solar magnetic (SM) coordinates. Average geocentric distances to the magnetopause for the 1972–1973 solar wind conditions (density 9.4 cm?3, velocity 450 km s?1) are 8.8 RE in the sunward direction, 14.7 RE in the dusk direction, 13.4 RE in the dawn direction and 13.7 RE in the direction normal to the ecliptic plane. The magnetopause surface is tilted by 6.6° ± 2° in a direction consistent with that expected from the aberration effect of the radial solar wind. Our data suggest that the solar wind plasma density and the interplanetary magnetic field (IMF) orientation affect the distance to the polar magnetopause, larger distances corresponding to higher plasma density and southward fields. Our best-fit magnetopause surface shows larger geocentric distances than predicted by the model of Choe et al. [Planet Space Sci. 21, 485 (1973).] normalised to the same solar wind pressure.  相似文献   

20.
MHD problems of solar wind interaction with the Earth's magnetosphere on the day-side are investigated. These ideas are used for the analysis of satellite data on the day-side magnetopause crossing. It is shown that the observed regularities may be adequately explained within the bounds of MHD-flow theory which includes the stagnation line at the nose of the magnetosphere. The ratio k of the magnetic field pressure to the plasma pressure in the vicinity of the subsolar point of the magnetosphere, which determines the magnitude of the interplanetary magnetic field penetrating into the magnetosphere, was estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号