首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Observations of the solar full-disk were carried out by the Atmo- spheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) with the Fe IX 171 Å line on 16th October 2010. The obtained high-quality data permit us to elaborate on the coronal loop oscillations. It is found that a major flare of GOES (Geostationary Operational Environmental Satellite) class M2.9 occurred in the active region NOAA 1112 during this period, which triggered a number of coronal loops on the solar surface to oscillate. Among them, there are two coronal loops exhibiting oscillations with different physical features. The oscillation of the coronal loop located at W492/S170 is a simple harmonic oscillation with a period of 385s, which abides by the oscillating equation of x = 2.2 sin[2π/385(t–768)], while the other located at W559/S142 is a damping oscillation with a period of 449s, and the oscillating equation is expressed by x = 24.8e - 2π/343 t sin[2π/449(t–1128)], where t is the observational time in units of second.  相似文献   

2.
The evolution of Population I stars with initial masses 70M M ZAMS ≤ 130M is considered. The computations were performed under various assumptions about the mass loss rate and were terminated at the phase of gravitational contraction after core helium exhaustion. The mass loss rate at the helium burning phase, ?3α , is shown to be the main parameter that determines the coefficients of the mass—luminosity relation for Wolf—Rayet stars. Several more accurate mass—luminosity relations for mass loss rates ? = f 3α ?3α , where 0.5 ≤ f 3α ≤ 3, are suggested, along with the mass—luminosity relation that combines all of the evolutionary sequences considered. The results of the stellar evolution computations were used as initial conditions in solving the hydrodynamic equations describing the spherically symmetric motions of a self-gravitating gas. The outer layers of massive Population I stars are unstable against radial oscillations throughout the helium burning phase. The oscillation amplitude is largest at enhanced carbon and oxygen abundances in the outer stellar layers, i.e., at a lower initial stellar mass M ZAMS or a lower mass loss rate during the entire preceding evolution. In the course of evolution, the radial oscillation amplitude decreases and the small nonlinearity of the oscillations at M < 10M allow the integral of mechanical work W done by an elementary spherical layer of gas in a closed thermodynamic cycle to be calculated with the necessary accuracy. The maximum of the radial dependence of W is shown to be located in layers with a gas temperature T ~ 2 × 105 K, where the oscillations are excited by the iron Z-bump κ-mechanism. Comparison of the radial dependences of the integral of mechanical work W and the amplitude of the radiative flux variations suggests that the nonlinear radial oscillations of more massive Wolf—Rayet stars are also excited by the κ-mechanism.  相似文献   

3.
Partial reflection radiowave wind observations have been made continuously at Saskatoon for 1 year (September 1978–August 1979). The winds have been obtained in real-time from a twin micro-processor system, that produces profiles (32 heights from 49 to 142km) at 5-min intervals: daytime/night-time profiles normally involve values from 6070 to 120 km.These data have been analyzed to give the daily mean wind and the amplitudes and phases of planetary, tidal (24, 12 h) and internal gravity (I.G.) waves (0.20 ? τ ? 6h). There are oscillations in the mean daily wind, with periods of 2–30 days: the disturbance from 60 to 100 km caused by the stratwarm of February and March is documented. The characteristics of the semi-diurnal tide undergo significant changes in vertical wavelength and time of maxima between summer months (May–August) and winter months (November–February): during summer the S22 mode (λz ? 150km) seems to dominate, and in other months a mixture of modes (λz ? 50km) exist. The diurnal tide is less regular, but during winter and spring λz ? 30–60 km, and for other months is very large, suggesting the S?11 mode. Energy densities and scale heights (h0) are given, and the relative magnitudes of these for the various waves are discussed with respect to height and season: there is a general trend for the growth of the wave amplitude with height (shown by h0) to increase in the order planetary, tidal and I.G. waves (h0, ~3–15 km): largest values are in winter and spring. Wave energies are largest in winter, decrease during spring and increase throughout late summer and fall.  相似文献   

4.
Convection is one of the most important processes responsible for the formation of the surface features on many planetary bodies. Observations of some icy satellites indicate that the satellites’ surfaces are modified due to the internally driven tectonic activity. The tidal heating could be an important source of energy responsible for such internal activity. This suggestion is supported by the correlation of the tidal parameter ψ and tectonic features. Consequently, the tidal and the radiogenic heat sources seem to be of primary importance for the medium size icy satellites. Our research deals with convection in a non-differentiated body. The convection is a results of both uniform radiogenic heating and non-uniform and non-spherically symmetric tidal heating. To investigate the problem a 3D model of convection is developed based on the Navier-Stokes equation, the equation of thermal conductivity, the equation of continuity, and the equation of state. The 3D formulae for the tidal heat generation based on the results of Peale and Cassen [1978. Icarus 36, 245-269] and others are used in the model. To measure the relative importance of radiogenic heating versus tidal heating a dimensionless number Ct is introduced. The systematic investigation of a steady-state convection is performed for different values of the Rayleigh number and for the full range of Ct. The results indicate that for low and moderate value of the Rayleigh number, convection pattern driven by the tidal heating and by the radioactivity in the medium size icy satellites consists of one cell or of two cells. For Ct>0 the critical value of Rayleigh number Racr=0. The one-cell pattern is specific for low Rayleigh numbers but it could be observed for the full range of number Ct. It means that the pattern of convection does not fully follow the pattern of heating. This rather unexpected result could be of great importance for the final stage of convection. All patterns of tidally driven convection are oriented with respect to the direction to the planet. For two-cell patterns the regions of downward motion are situated in the centers of the near and far sides of the satellite, respectively.  相似文献   

5.
An analysis of the images of objects in the Northern Hubble Space Telescope Deep Field has revealed twelve galaxies with tidal tails at redshifts from 0.5 to 1.5. The integrated characteristics of the newly discovered tidal structures are found to be similar to those of the tails of local interacting galaxies. The space density of galaxies with tidal tails is found to depend on z as (1+z)4±1(q 0=0.05), according to the data on objects with z=0.5–1.0. The exponent decreases to 3.6 if barred galaxies are included. The change in the rate of close encounters between galaxies of comparable masses (i.e., those that produce extended tidal structures) is estimated. If the rate of galactic mergers is governed by the same process, our data are indicative of the rapid evolution of galaxy merger rate toward z ~ 1.  相似文献   

6.
Observations of the central intensity of the Ca ii K and 849.8 nm lines are used to derive the ratios of the oscillation power in the frequency ranges of the “five-minute” (W 5) and “three-minute” (W 3) oscillations. It is shown that at high significance level ratios, (W 5/W 3) >1 at coronal hole bases, and W 5/W 3 ≈1 in quiet chromospheric areas far from holes.  相似文献   

7.
Possible waves and oscillations in the lunar photoelectron layer (PEL) are investigated. The steady state PEL is reviewed as a basis for discussing PEL motions. Magnetic fields are neglected, so that there are four possible wave modes to consider. The propagation through the PEL of the two electromagnetic modes is discussed. Positive-ion waves, the third mode, are dismissed and plasma waves are considered at length. It is concluded that there are no propagating waves in the PEL other than electromagnetic. However, there is a type of oscillation which appears to be new and which may not be strongly damped. With these oscillations, termed flight-time oscillations, the height of the PEL fluctuates as does the electric field. These oscillations appear to be analogous to the height oscillations of the vertical jet of water in a city park water fountain. If flight-time oscillations are not much damped then it would be simplest to interpret them as plasma oscillations continually driven by the upwelling photoelectron stream. A possible laboratory investigation of these oscillations is discussed. For the surfaces of the Moon and the planet Mercury, the flight-time oscillation frequency,ω F, is found to be respectively ç 4 × 106 and ç 107 rad s?1. The PEL's of those surfaces may be in a state of continual vertical ‘quivering’ due to flight-time oscillations, or may be quiescent.  相似文献   

8.
Surface features of some icy satellites indicate that the satellites are modified due to the internally driven tectonic activity. Convection could be one of the processes responsible for the formation of the surface features. The potential sources of energy inside the satellites are discussed. For the medium sized icy satellites the radiogenic and tidal heat sources seem to be of primary importance. To investigate the problem, a 3D model of convection is developed based on the Navier–Stokes equation, the equation of thermal conductivity, the equation of continuity, and the equation of state. The model includes both the tidal and the radiogenic heating. It can be applied to the homogeneous, non-differentiated medium sized satellites. The 3D formulae for tidal heat generation and stress tensor based on the results of Peale and Cassen (1978) and others are applied. A new dimensionless number C t is introduced. It measures the relative importance of tidal and radiogenic heat sources. The systematic investigation of the steady-state convection is performed for different values of the Rayleigh number and for 0C t 1. The results indicate that the convection pattern for low Rayleigh number driven by tidal heating in the medium sized icy satellites consists of two cells. The pattern of tidally driven convection is oriented, that is, the regions of downward motion are situated at the center of the near- and of the far-side of the satellite.  相似文献   

9.
Fitting observed power and cross spectra of medium-degree p modes in velocity (V) and intensity (I) has been widely used for getting information about the p-mode excitation process and, in particular, for trying to determine the type and location of the acoustic sources. Numerical simulations of solar convection allow one to “observe” velocity and temperature (T, used as proxy for I) fluctuations in different reference frames. Sampling the oscillations on planes of constant optical depth (τ-frame) closely corresponds to the observer’s point of view, whereas sampling the oscillations at constant geometrical height (z-frame) is more appropriate for comparison with predictions from theoretical models based on Eulerian hydrodynamics. The results of the analysis in the two frames show significant differences. Considering the effects introduced on oscillations by the steep temperature gradient of the photosphere and by the temperature- and pressure-dependent continuum opacity, we develop a new model for fitting the simulated V and T power and cross spectra both in the τ- and z-frames and discuss its merits and limitations.  相似文献   

10.
The excitation of Alfvénic waves in solar spicules by localized Alfvénic pulses is investigated. A set of incompressible MHD equations in the two-dimensional xz plane with steady flows and sheared magnetic fields is solved. Stratification due to gravity and transition region between chromosphere and corona is taken into account. An initially localized Alfvénic pulse launched below the transition region can penetrate from transition region into the corona. We show that the period of the transversal oscillations is in agreement with those observed in spicules. Moreover, it is found that the excited Alfvénic waves spread during propagation along the spicule length, and suffer efficient damping of the oscillations amplitude. The damping time of the transverse oscillations increased with decreasing k b values.  相似文献   

11.
12.
The present paper reports a class of new solutions of charged fluid spheres expressed by a space time with its hypersurfaces t=const. as spheroid for the case 0<K<1 with surface density 2×1014 gm/cm3. When the Buchdahl’s type fluid spheres are electrified with generalized charged intensity and it is utilized to construct a super-dense star and found that star satisfies all reality conditions except the casual condition for 0<K≤0.05. The maximum mass occupied and the corresponding radius have been obtained 8.130871 M Θ and 24.60916 km respectively. Further, the redshift at the centre and on the surface are noted by z 0=0.933729 and z a =0.383808 respectively.  相似文献   

13.
A plane-wave analysis on a simplified scheme based on the Boussinesq approximation and shallow convection is used to establish the necessary conditions for stability of a differentiallyrotating, compressible flow between two coaxial cylinders subject to non-axisymmetric perturbations. To test the adequateness of this simplification, the sufficient conditions for stability are again established which agree with those obtained by a normal-mode analysis on an exact scheme in an earlier paper by the author. This model is applicable to stellar models with rotation Ω=Ω(ω), where ω is the radial distance from the axis of rotation (thez-axis). A necessary condition for stability, in the non-dissipative case, is found to be that $$\frac{1}{\varrho }G_\varpi S_\varpi + \frac{{k_z^2 }}{M}\Phi - \frac{1}{4}\frac{{m^2 }}{M}\left( {D\Omega } \right)^2 \geqslant 0$$ everywhere. Here,m andk z are the wave numbers in the ø- andz-direction, \(M \equiv k_z^2 + m^2 /\varpi ^2 ,D \equiv d/d\varpi ,G_\varpi \equiv - \varrho ^{ - 1} Dp,\varrho \) the density,p the pressure,S ω and Φ the Schwarzschild and the Rayleigh discriminants defined as \(S_\varpi \equiv \left( {\gamma p/\varrho } \right)^{ - 2} Dp - D\varrho and \Phi \equiv ^{ - 3} d\left( {\varpi ^4 \Omega ^2 } \right)/d\varpi \) respectively, γ the ratio of specific heats. This condition is also a sufficient one. Some conjectures regarding the stabilizing influence of uniform rotation and the destabilizing influence of differential rotation are also verified. The most striking instability mechanism introduced by shear forces and by radiative dissipation is the excitation of the stable motion of small oscillations into that of oscillations with growing amplitude, i. e., overstability. In the case of radiative dissipation and axisymmetric perturbations, the Goldreich-Schubert criterion is only necessary but not sufficient for stability. Instability sets in as soon as the Schwarzschild criterion is violated. When the perturbations are non-axisymmetric, instability always sets in as overstability as long as rotation is differential. This may explain the convective turbulence in the upper atmosphere where the radiation is active.  相似文献   

14.
K. Karami  K. Bahari 《Solar physics》2010,263(1-2):87-103
The standing quasi-modes in a cylindrical incompressible flux tube with magnetic twist that undergoes a radial density structuring is considered in ideal magnetohydrodynamics (MHD). The radial structuring is assumed to be a linearly varying density profile. Using the relevant connection formulae, the dispersion relation for the MHD waves is derived and solved numerically to obtain both the frequencies and damping rates of the fundamental and first-overtone modes of both the kink (m=1) and fluting (m=2,3) waves. It was found that a magnetic twist will increase the frequencies, damping rates and the ratio of the oscillation frequency to the damping rate of these modes. The period ratio P 1/P 2 of the fundamental and its first-overtone surface waves for kink (m=1) and fluting (m=2,3) modes is lower than two (the value for an untwisted loop) in the presence of twisted magnetic field. For the kink modes, particularly, the magnetic twists B φ /B z =0.0065 and 0.0255 can achieve deviations from two of the same order of magnitude as in the observations. Furthermore, for the fundamental kink body waves, the frequency band width increases with increasing magnetic twist.  相似文献   

15.
Numerical solutions of the general time-dependent gas-dynamical equations in linear adiabatic approximation are given for initial conditions imitating: (a) a central perturbation, (b) a boundary perturbation (in the convective envelope), and (c) a ‘shrinking’ of the Sun as a whole. For a variety of models of the Sun it is found that at the surface the radial component v r of velocity is much greater than the tangential component v t , and that the period T of stationary oscillations does not exceed 131m. The appearance at the surface of a g mode with period 160m is found to be improbable. With the initial conditions adopted, a propagating wave is produced which is reflected successively from the centre to the periphery and back, producing 5-min oscillations at the surface of the Sun. Expansion of this wave into separate modes leads to a power spectrum qualitatively similar to that observed.  相似文献   

16.
The density distributions of the two main components in interstellar hydrogen are calculated using 21 cm line data from the Berkeley Survey and the Pulkovo Survey. The narrow, dense component (state I of neutral hydrogen) has a Gaussianz-distribution with a scale-height of 50 pc in the local zones (the galactic disk). For the wide, tenuous component (hydrogen in state II) we postulate a distribution valid in the zones where such a material predominates (70 pc?z? 350 pc the galactic stratum) i.e., $$n_H \left( z \right) = n_H \left( 0 \right)exp \left( { - \left( {z/300{\text{ }}pc} \right)^{3/2} } \right).$$ Similar components are found in the dust distribution and in the available stellar data reaching sufficiently highz-altitudes. The scale-heights depend on the stellar type: the stratum in M III stars is considerably wider than in A stars (500–700 pc against 300 pc). The gas to dust ratio is approximately the same in both components: 0.66 atom cm?3 mag?1 kpc in the galactic plane. A third state of the gas is postulated associating it the observed free electron stratum at a scale-height of 660 pc (hydrogen fully ionized at high temperatures). The ratio between the observed dispersions in neutral hydrogen (thermal width plus turbulence) and the total dispersions corresponding to the real inner energies in the medium is obtained by a comparison with the dispersion distribution σ(z) of the different stellar types associated with the disk and the stratum $$\sigma ^2 \left( {total} \right) = \sigma ^2 \left( {21{\text{ cm line}}} \right) \cdot {\text{ }}Q^2 ,$$ from which we graphically obtainedQ 2=2.9 ± 0.3, although that number could be lower in the densest parts of the spiral arms. Its dependence on magnetic field and cosmic rays is analysed, indicating equipartition of the different energy components in the interstellar medium and consistency with the observed values of the magnetic field: i.e., fluctuations with an average of ~ 3 μG (associated with the disk) in a homogeneous background of ~ 1 μG (associated with the stratum). A minimum and maximumK z-force are obtained assuming extreme conditions for the total density distribution (gas plus stars). TheK z-force obtained from the interstellar gas in its different states using approximations of the Boltzmann equation is a reasonable intermediate case between maximum and minimumK z. The mass density obtained in the galactic plane is 0.20±0.05M pc?3, and the results indicate that the galactic disk is somewhat narrower and denser than has usually been believed. The effects of wave-like distributions of matter in thez-coordinate are analysed in relation with theK z-force, and comparisons with theoretical results are performed. A qualitative model for the galactic field of force is postulated together with a classification of the different zones of the Galaxy according to their observed ranges in velocity dispersions and the behaviour of the potential well at differentz-altitudes. The disk containing at least two-thirds of the total mass atz<100 pc, the stratum containing one-third or less of the total mass atz≤600–800 pc, and the halo at higherz-altitudes with a small fraction of such a mass which is difficult to evaluate.  相似文献   

17.
Numerous U and V magnitude measurements were performed for the nucleus of the Seyfert galaxy NGC 4151 at the Crimean Laboratory of the SAI (Moscow University) in 1994–2005. Adding them to the previous data for 1968–1997 has led to a substantial increase in the confidence level of the light variations in NGC 4151 with a stable period of P G = 160.0108(7) min and a mean amplitude of 0.007 U mag (in the “active” state of the nucleus). The period of NGC 4151 agrees well with the period of 160.0101(15) min found previously in the oscillations of the Sun. It is treated as the period of a “coherent cosmic oscillation” independent of redshift z or as the period of “free cosmic vibrations” of the hydrogen atom, the main element of the Universe. The period and initial phase of the P G oscillation have been constant for 38 years of NGC 4151 observations. The new astrophysical phenomenon appears to be closely related to the quantum nonlocality of photons and is of particular interest in physics and cosmology.  相似文献   

18.
In this paper, we study the domain wall with time dependent displacement vectors based on Lyra geometry in normal gauge i.e. displacement vector φ i * =[β(t),0,0,0]. The field theoretic energy momentum tensor is considered with zero pressure perpendicular to the wall. We find an exact solutions of Einstein’s equation for a scalar field φ with a potential V(φ) describing the gravitational field of a plane symmetric domain wall. We have seen that the hyper surfaces parallel to the wall (z=constant) are three dimensional de-sitter spaces. It is also shown that the gravitational field experienced by test particle is attractive.  相似文献   

19.
Evaluations are presented of the time-average heating at different latitudes and heights due to energy flux divergence of the equinox diurnal and semidiurnal tides calculated by Forbes (1982a,h)from 0 to 400 km.It is found that diurnal tidal heating maximizes in the region of 80 km and semidiurnal has a sharp maximum at 108 km. Thermospheric diurnal oscillations give rise to a second region of heating that maximizes at 200 km and effectively transports energy from low to high latitudes.Global means are evaluated for the time-averaged vertical energy fluxes and heating rates: below 130 km, the results for the diurnal tide agree with those for the (1,1) mode alone, and for the semidiurnal tide, heating rates below 130 km are the same as those that would he obtained without the thermospheric semidiurnal excitation.Comparisons are made from 90 to 170 km between the combined diurnal and semidiurnal heating rates and previously reported rates due to e.u.v. radiation, Sq currents and gravity waves.  相似文献   

20.
Chen  Cheng-Jen 《Solar physics》1974,37(1):53-62
Radiation is believed to be hostile to the generation of gravity waves by granulation at the base of photosphere where the radiation is effective. A convective overshoot from subphotosphere seems able to penetrate to a height where the solar temperature is minimum and to excite the gravity waves in a stable region there.The response of the solar atmosphere to a Gaussian disturbance characterizing such a convective overshoot is studied in an unbounded isothermal atmosphere. Radiative effects are included, but only in regions which are optically thin. The response is measured in terms of mean vertical kinetic energy density (E z) and mean vertical external energy flux (Q z). E z and Q z were calculated for a wide range of frequencies centered at the observed 5-min velocity oscillation period. The computed sharp and broad power spectra at the lower chromosphere and the upper photosphere, respectively, are attributed to the combined effects of space damping and source function. Low-frequency waves (2000 s or longer) are found to be not responsible for depositing energy in the upper solar atmosphere.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号