首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
《Planetary and Space Science》1987,35(8):1009-1020
Latitudinal structures of discrete arcs are modelled as a consequence of the quasi-steady magnetosphere-ionosphere coupling involving viscous interaction between sunward and anti-sunward plasma flows in the magnetosphere. The quasi-steady state in the magnetosphere and ionosphere coupling is described by the magnetospheric and ionospheric current conservation and the field-aligned currentpotential relation assuming adiabatic electron motion along field lines. The upward and downward fieldaligned currents are assumed to be stably maintained by vorticity-induced space charges in the region of plasma flow reversal, where divergence of the magnetospheric electric field E is negative and positive, respectively. By introducing the effective conductance Σdc arising from the anomalous viscosity, a specific relation between the dc field-aligned current density J and the magnetospheric electric field E is derived as J=−ΣdcdivE. Sufficiently large potential drops to accelerate auroral electrons are shown to exist along the auroral field lines originating from the flow reversal region with div E < 0. It is shown that the latitudinal structure of a discrete arc is primarily determined by the magnetospheric potential structure and the characteristic width is on the order of 10 km at the ionospheric altitude.  相似文献   

3.
A theory is presented for charged-particle collection by a cylindrical conducting object, such as a spacecraft or an electrostatic probe, which is moving transversely through a collisionless plasma, such as those in the upper atmosphere and space. The calculation is approximate, using symmetric potential profiles which are exact for the infinite-cylinder stationary case. Theoretical current predictions are presented for ratios of collector potential to electron thermal energy c/kTe from 0 to ?25, for ion-to-electron temperature ratios Ti/Tc = 1 and 0.5, ratio of collector radius to electron Debye length rc/λD from 0 to 100, and ratio of flow speed to ion thermal speed Si = U/(2kTi/mi12) from 0 to 10. Comparisons with existing exact calculations by other authors show that none of these fulfil all of the requirements for nontrivial comparison. Appropriate parameter ranges for future exact calculations are thereby suggested. These are as follows: (a) rc/λD should be large enough that the collector not be in or near orbit-limited conditions; (b) the ratio Si2/¦χc, i¦ of ion directed energy to potential energy change in the sheath, should be close to unity or if
Si2/¦χc,i¦? 1, then Si ? 1
.  相似文献   

4.
The magnetopause, the boundary layer, or current sheath, which separates the magnetosphere from the solar wind, is the particular interaction considered in this paper.The collision free electron skin depth, ξe = cωpe, where c is the velocity of light and ωpe, is the plasma frequency, gives a classical measure of the penetration depth of a collisionless plasma by an electromagnetic field. This penetration depth is small compared with the dimensions of the magnetosphere and hence the boundary layer may be conveniently considered in one dimension.In General all one dimensional solutions lie within an order of magnitude of the value of ξe, the only exception being the important one, in which the electric field perpendicular to the current sheath plane is not present, either due to a particular trapped particle distribution or due to a short circuiting end effect. For this exception the thickness is increased by the factor (mii/me)12.The current sheath solutions discussed are equilibrium solutions but not necessarily stable equilibrium solutions.The extension of the models to three dimensions has a larger effect than might at first be expected. The effect may be intuitively understood as a consequence of flux conservation in the sheath. The one dimensional solutions then correspond to the current sheath profiles at the thinnest point of the three dimensional sheath.  相似文献   

5.
Numerical solutions of the Fokker-Planck equation governing the transport of solar protons are obtained using the Crank-Nicholson technique with the diffusion coefficient represented by Kr=K0rb where r is radial distance from the Sun and b can take on positive or negative values. As b ranges from +1 to ?3, the time to the observation of peak flux decreases by a factor of 5 for 1 MeV protons when VK0 = 3 AUb?1 where V is the solar wind speed. The time to peak flux is found to be very insensitive to assumptions concerning the solar and outer scattering boundary conditions and the presence of exponential time decay in the flux does not depend on the existence of an outer boundary. At VK0? 15 AUb?1, 1 MeV particles come from the Sun by an almost entirely convective process and suffer large adiabatic deceleration at b?0 but for b=+1, large Fermi acceleration is possible at all reasonable VK0 values. Implications of this result for the calculation and measurement of particle diffusion coefficients is discussed. At b?0, the pure diffusion approximation to transport overestimates by a factor 2 or more the time to peak flux but as b becomes more negative, the additional effects of convection and energy loss become less important.  相似文献   

6.
In the recent estimation by Maltsev and Lyatsky (1984) of the group velocity of surface waves on the inner boundary of the plasma sheet, the effect of the curvature of the field lines of the ambient magnetic field of the Earth on the spectrum has been assessed. The authors have not accounted for the fact, however, that the group velocity of the compressional surface magnetohydrodynamic waves itself is nonzero transverse to the magnetic field—a characteristic which has been omitted in the spectrum of Chen and Hasegawa (1974), being used by Maltsev and Lyatsky.This characteristic of compressional surface MHD waves is inherent for the spectrum ω = (k6k)VA(k26 + 2k2)12, obtained by Nenovski (1978) in the cold plasma limit VA ? VS(VA is Alfvén velocity, and VS, sound velocity). A comment has been made on the restrictions, proceeding from the approximation, used by Maltsev and Lyatsky. The estimation of the velocities for movements of auroral riometer absorption bays have been reviewed.  相似文献   

7.
The photodissociation of water vapour in the mesosphere depends on the absorption of solar radiation in the region (175–200 nm) of the O2 Schumann-Runge band system and also at H-Lyman alpha. The photodissociation products are OH + H, OH + H, O + 2H and H2 + O at Lyman alpha; the percentages for these four channels are 70, 8, 12 and 10%, respectively, but OH + H is the only channel between 175 and 200 nm. Such proportions lead to a production of H atoms corresponding to practically the total photodissociation of H2O, while the production of H2 molecules is only 10% of the H2O photodissociation by Lyman alpha.The photodissociation frequency (s?1) at Lyman alpha can be expressed by a simple formula
JLyαH2O=4.5 ×10?61+0.2F10.7?65100exp[?4.4 ×10?19 N0.917]
where F10.7 cm is the solar radioflux at 10.7 cm and N the total number of O2 molecules (cm?2), and when the following conventional value is accepted for the Lyman alpha solar irradiance at the top of the Earth's atmosphere (Δλ = 3.5 A?) qLyα,∞ = 3 × 1011 photons cm?2 s1?.The photodissociation frequency for the Schumann-Runge band region is also given for mesospheric conditions by a simple formula
JSRB(H2O) = JSRB,∞(H2O) exp [?10?7N0.35]
where JSRB,∞(H2O) = 1.2 × 10?6 and 1.4 × 10?6 s?1 for quiet and active sun conditions, respectively.The precision of both formulae is good, with an uncertainty less than 10%, but their accuracy depends on the accuracy of observational and experimental parameters such as the absolute solar irradiances, the variable transmittance of O2 and the H2O effective absorption cross sections. The various uncertainties are discussed. As an example, the absolute values deduced from the above formulae could be decreased by about 25-20% if the possible minimum values of the solar irradiances were used.  相似文献   

8.
We analyze linear resonance oscillations in a non-uniform one-fluid finite-β plasma, which is oversimplified to understand easily fundamental characteristics of the resonance oscillations. A linear resonance oscillation of localized slow magnetosonic mode 2s = ω2A(1 + V2AV2s)], which has the diamagnetic property in a uniform plasma, is newly found to be excited in the radially non-uniform plasma. The localized slow resonance indicates a radially polarized compressional oscillation (δB ? δBH ? δBD). The sense of the Alfvénic polarizations in the H-D plane near the resonant point is a function of both the propagation in the azimuthal direction and the slope of wave amplitude in the radial direction, whereas the sense of the resonant slow magnetosonic polarizations changes in accordance only with the switch in the azimuthal propagation direction. Further multi-satellite studies are necessary to establish the resonant structures of the slow magnetosonic waves in the magnetosphere.  相似文献   

9.
Incoherent scatter observations of the ionospheric F1 layer above Saint-Santin (44.6°N) are analyzed after correction of a systematic error at 165 and 180 km altitude. The daytime valley observed around 200 km during summer for low solar activity conditions is explained in terms of a downward ionization drift which reaches ?30 m s?1 around 180 km. Experimental determinations of the ion drift confirm the theoretical characteristics required for the summer daytime valley as well as for the winter behaviour without a valley. The computations require an effective dissociative recombination rate of 2.3 × 10?7 (300/Te)0.7 (cm3s?1) and ionizing fluxes compatible with solar activity conditions at the time when the valley is observed.  相似文献   

10.
The change of energy of a collisionless, two-fluid plasma consists of the adiabatic gain or loss of energy, which is due to the work done by the electromagnetic forces, and of the non-adiabatic change associated with the presence of the “rest” field E1 = E + (1c)V×B. The non-adiabatic gain or loss of energy per unit ti may be expressed by the relation
Q=E·i+ceNB2f?×f
where i is the density of conductive current, N the ion number-density, and f (f?) the sum of inertia and pressure divergence of ions (electrons). Symbols of parallelism refer to the direction of B.A special case of non-adiabatic energization of a slowly convecting plasma sheet plasma is discussed in some detail. Regardless of the value of V, the non-adiabatic energization may significantly exceed any conceivable energization associated with the electric field ?(1c) V × B.  相似文献   

11.
The paper gives the results of detailed studies of the frequency spectra Ss(?) of the chain of the wave packets Fs(t) of geomagnetic pulsations PC-1 recorded at the Novolazarevskaya station. The bulk of the energy of Fs(t) is concentrated in the vicinity of the central frequencies ?s0 of spectra—the carrier frequencies of the signals. The velocity V0 ≌ 6.103km s?1 of the flux of protons generating these signals correspond to them. The spectra of the signals have oscillations—“satellites” irregularly distributed in frequency. These satellites, as the authors believe, testify to the presence of the individual groups of protons of low concentration whose velocities vary within 103–104 km s?1.Their energy is only of the order of 10?2–10?3 of the energy of the main proton flux. Clearly pronounced maxima on double and triple frequencies ? = 2?s0and 3?s0 are detected. They show that the generation of pulsations PC-1 is accompanied by the generation on the overtones of wave packets called in this paper “two-fold” and “three-fold” pulsations PC-1. Intensive symmetrical satellites of a modulation character have been discovered on frequencies ?±sK. Frequency differences Δ?sK± = ¦?s0 ? ?sK±¦ = (0.011,0.022 and 0.035) Hz correspond to them. The authors believe that the values of Δ?±sK are resonance frequencies of the magnetospheric cavity in which geomagnetic pulsations PC-1 are generated. It is established that the values of Δ?±sK coincide closely with the carrier frequencies of geomagnetic pulsations PC-3 and PC-4 generated in the magnetosphere. This leads to the conclusion that the resonance oscillations of the magnetospheric cavity are their source. Thus, the generation of geomagnetic pulsations of different types and resonance oscillations in the magnetosphere are integrated into a unified process. The importance of the results obtained and the necessity to check further their trustworthiness and universality, using experimental data gathered in different conditions, is stressed.  相似文献   

12.
Ten years data set is used to separate the influence of IMF Bz-component and solar wind speed on the dawn-dusk component of magnetic variations in the summer polar cap. The reference level was chosen from most quiet periods of winter solstices (small polar cap and auroral zone conductivity) to exclude the inner source component. The linear regression analysis was then used to calculate the PC variation response to Bz under different ranges of solar wind speed. As a result, taking into account the value of polar cap conductivity and effects of induced currents, the response of dawn-dusk electric field component to Bz and V was obtained and the potential difference across the polar cap was estimated to be Δ?(kV) ≈ 6(V300)2 ? 9Bz(γ) for Bz ? + 1γ. The results give a proof for simultaneous operation in the magnetosphere of two electric field generation mechanisms, related to the boundary layer processes and magnetic field reconnection. The above-mentioned functional form was shown to correlate effectively with AE index (R = 0.73).  相似文献   

13.
Impulsive penetration of a solar wind filament into the magnetosphere is possible when the plasma element has an excess momentum density with respect to the background medium. This first condition is satisfied when the density is larger inside than outside the plasma inhomogeneity. In this paper we discuss the second condition which must be satisfied for such a plasma element to be captured by the magnetosphere: the magnetization vector (M) carried by this plasma must have a positive component along the direction of B0, the magnetic field where the element penetrates through the magnetopause. On the contrary, when M · B0 < 0, the filament is stopped at the surface of the magnetopause. Thus the outcome of the interaction of the filament with the magnetosphere depends upon the orientation of the Interplanetary Magnetic Field. For instance, penetration and capture in the frontside magnetosphere implies that Bsw, the Interplanetary Magnetic Field, has a southward, or a small northward, component. Penetration and capture in the northern lobe of the magnetotail is favoured for an IMF pointing away from the Sun; in the southern lobe Bsw must be directed towards the Sun for capture. Finally, for capture in the vicinity of the polar cusps the magnetospheric field (B0) assumes a wider range of orientations. Therefore, near the neutral points, it is easier to find a place where the condition M · B0 > 0 is satisfied than elsewhere. As a consequence, the penetration and capture of solar wind irregularities in the cleft regions is possible for almost any orientation of the interplanetary magnetic field direction. All observations made to date support these theoretical conclusions.  相似文献   

14.
Magnetic-field aligned currents driven by plasma pressure inhomogeneities (plasma clouds) in the distant magnetosphere are analyzed quantitatively. A parallel potential drop is found to be established in the upward current region whenever a spatial scale D0 for the pressure gradient in the equatorial magnetosphere is smaller than ≈ 3g0BiB0, where g0 is a hot electron gyroradius in the equatorial magnetic field B0 (Bi denotes the magnetic induction in the ionosphere). A theoretical derivation is given for the experimentally observed linear relation T = AEp + T0 between the characteristic energy T of precipitating magnetospheric electrons and the peak energy Ep in inverted-V electron spectra. Three-dimensional potential structures accelerating electrons earthward are shown to be established beneath some model clouds which could correspond to a large scale inverted-V structure and to a thin (~ 1 km) auroral arc.  相似文献   

15.
An astrophysical electron acceleration process is described which involves turbulent plasma effects: the acceleration mechanism will operate in ‘collision free’ magnetoactive astrophysical plasmas when ion-acoustic turbulence is generated by an electric field which acts parallel to the ambient magnetic lines of force. The role of ‘anomalous’ (ion-sound) resistivity is crucial in maintaining the parallel electric field. It is shown that, in spite of the turbulence, a small fraction of the electron population can accelerate freely, i.e. runaway, in the high parallel electric potential. The number density n(B) of the runaway electron component is of order n(B)?n2(csU?)2, where n = background electron number density, cs = ion-sound speed and U? = relative drift velocity between the electron and ion populations. The runaway mechanism and the number density n(B) do not depend critically on the details of the non-linear saturation of the ion-sound instability.  相似文献   

16.
We have collected data on 241 galaxies from 13 sources and made a statistical analysis after reduction to a uniform system. We found that the Hubble sequence is one of increasing MHMT and MHLB, these mean values increasing monotonically from .0016 and .024 at E to .084 and .83 at Im, but the dispersion is large.The HI content in barred spiral is greater than that in ordinary spirals, and this is consistent with their statistics of angular momentum and colour.The HI content is related to colour; it is greater in bluer systems. The large dispersion suggests that it also depends on some other factors, but these are smoothed out when averaged over each type, resulting in a linear relation between 〈log(MMMT and 〈(B ? VOT)〉. Unlike the colour-colour diagram, the large dispersion on the log (MHLB) ? (B ? V0T) is not related to peculiar galaxies.  相似文献   

17.
We discuss certain dynamical processes during the final stage of the sinking of the dust layer. We supposed that turbulance gave rise to a state of slow sinking (quasi-equilibrium) and evaluated the critical thickness at the onset of gravitational instability in the radial direction. We gave a precise numerical relation between 3 length-scales: 〈|Z|〉c : h1 : λT = 0.02107 : 0.1592 : 1, the first being the mean height of the dust particles at the onset of radial instability, the second being that value of the half-thickness and of the height at which the self-gravity of the dust layer is equal to the solar z-component, and the last being the longest wavelength at the onset of ring instability. We also calculated the time required for the formation of rings and found it to be far shorter than the sinking time.  相似文献   

18.
S.V. Gavrilov  V.N. Zharkov 《Icarus》1977,32(4):443-449
We calculate the Love numbers kn for n = 2 to 10, and determine the “gravitational noise” from tides. The new values k2 for Jupiter, Saturn, and Uranus yield new estimates for the planetary dissipation functions: QJ ? 2.5 × 104, QS ? 1.4 × 104, QU ? 5 × 103.  相似文献   

19.
Six times of maxima of the ultrashort-period cepheid variable EH Librae were measured in 1980 May to June and in 1981 January, with a three-channel photocounting high-speed photoelectric photometer. These, together with all the photoelectric times of maxima over the past 30 years, are used to re-examine the nature of the change of the period. We found that we can fix the times of maxima by the following formula
Tmax = T0+P0E+12βE2+AsinEP0E0
where T0 = HJD 2433438.6088 and P0 = 0.0884132445 d represent the initial maximum epoch and the pulsation period, β = ?2.8 × 10?8/yr; A = 0.0015 d, P0 = 6251 d = 17.1 yr are the semi-amplitude and the period of the sine curve, and E is the number of periods elapsed since T0, and (E0 = 70700).If we interpret this 17.1 year periodicity as a modulation of the phase of maximum by binary motion, then the semi-amplitude of the orbital radial velocity variation is K = 2πasini/E0 = 0.45 km/s and the mass function is
f(m)=m32sin3i(m1m2)2=(asini)3E20=6 x 10?5M
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号