首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the central part of the internal Western Alps, widespread multidirectional normal faulting resulted in an orogen-scale radial extension during the Neogene. We revisit the frontal Piémont units, between Doire and Ubaye, where contrasting lithologies allow analysing the interference with the N–S trending Oligocene compressive structures. A major extensional structure is the orogen-perpendicular Chenaillet graben, whose development was guided by an E–W trending transfer fault zone between the Chaberton backfold to the north and the Rochebrune backthrust to the south. The Chaberton hinge zone was passively crosscut by planar normal faults, resulting in a E–W trending step-type structure. Within the Rochebrune nappe, E–W trending listric normal faults bound tilted blocks that slipped northward along the basal backthrust surface reactivated as an extensional detachment. Gravity-driven gliding is suggested by the general northward tilting of the structure in relation with the collapse of the Chenaillet graben. The stress tensors computed from brittle deformation analysis confirm the predominance of orogen-parallel extension in the entire frontal Piémont zone. This can be compared with the nearby Briançonnnais nappe stack where the extensional reactivation of thrust surfaces locally resulted in prominent orogen-perpendicular extension. Such a contrasting situation illustrates how the main direction of the late-Alpine extension may be regionally governed by the nature and orientation of the pre-existing structures inherited from the main collision stage.  相似文献   

2.
渤海湾盆地黄骅坳陷新生代伸展量的时空分布特征*   总被引:2,自引:0,他引:2       下载免费PDF全文
董敏  漆家福  杨桥  袁峰 《古地理学报》2013,15(3):327-338
以渤海湾盆地黄骅坳陷22条区域地震剖面的构造解释为基础,利用平衡剖面技术计算了不同位置剖面的伸展量、伸展率和伸展系数,并分析了伸展量的时空分布规律。研究表明,黄骅坳陷新生代具有幕式伸展的特点,而且伸展量的时空分布极不均匀。空间上,伸展量主要是由盆地主边界断层伸展位移造成的,主边界断层位移较大处的伸展量也相应较大;时间上,水平伸展运动可以分为始新世、渐新世和新近纪3个时期,其中,始新世伸展主要发生在盆地南部,渐新世发生在中北部,新近纪伸展量较小,主要发生在中部。伸展量时空分布是受盆地构造变形、构造演化控制的。始新世,NNE向沧东断层的伸展位移是控制盆地伸展变形的主要因素,且沧东断层在盆地南区的伸展位移量较大。渐新世,NNE向沧东断层在盆地中北区的伸展位移量相对较大,同时盆地内部NNE向基底断层的右旋走滑诱导的NE向基底正断层对盆地伸展变形做出贡献。新近纪,盆地在后裂陷的热沉降过程中NNE向基底断层仍然有右旋走滑位移,致使盆地中部发育NE向盖层正断层。  相似文献   

3.
以慈利—安化走廊带为例, 对雪峰造山带北段西部地质构造特征进行了调查研究。研究表明, 雪峰造山带在廊带上可分为北部武陵断弯褶皱带和南部雪峰基底拆离带。武陵断弯褶皱带内主要发育北东东—东西向褶皱和同走向逆断裂, 另有少量北东向和北北西向右行平移断裂、北东东—东西向正断裂; 雪峰基底拆离带发育东西—北东向褶皱和同走向逆断裂、正断裂以及少量北东向平移断裂。武陵断弯褶皱带变形主要受控于板溪群底界面向北的滑脱及其导生的逆冲; 雪峰基底拆离带变形主要受控于切穿冷家溪群褶皱基底的断裂拆离与逆冲, 拆离与逆冲的方向总体由南向北, 但南缘总体逆冲方向指向南, 从而组成背冲构造样式。上述褶皱和断裂形成于武陵运动、加里东运动、印支运动、早燕山运动等挤压事件, 白垩纪伸展事件, 古近纪中晚期区域北东—北北东向挤压以及古近纪末—新近纪初北西向挤压等构造事件, 其中以加里东运动和印支运动形成的褶皱和同走向逆断裂最为重要。雪峰造山带北段与中段—南段一样具背冲构造样式, 但受加里东期近南北向挤压的区域大地构造背景影响, 北段逆冲、增厚和抬升作用的强度与幅度更大。   相似文献   

4.
唐渊  刘俊来 《岩石学报》2010,26(6):1925-1937
青藏高原隆升、周边地貌形成是新生代时期印度-欧亚板块碰撞后的重要响应。在滇西北地区发育了一系列由晚新生代(上新世以来)活动断裂所控制的盆地,例如宾川盆地、洱海盆地、鹤庆盆地、弥渡盆地等。宾川盆地是近南北向程海左行走滑断裂在走滑剪切作用下产生的北西向正断层和北东向走滑断层共同作用而形成的一个较大的拉分盆地。洱海盆地是由两组陡立的共轭张剪性(Transtensional)断层组限定的,为一伸展断陷盆地,总体上反映了近E-W向的区域伸展。滇西北地区发育的其它晚新生代盆地,如弥渡盆地、鹤庆盆地、剑川盆地等,也为区域走滑断裂及其分支断裂所控制,并且这些分支断裂在区域上为一组NE-SW和NW-SE向的共轭正断裂,反映了该区域近E-W向的伸展。将藏东南三江地区发育的活动断裂按照其走向分为三组:(1)NW-SE走向的断裂,如红河断裂、无量山-营盘山断裂等;(2)近N-S向断裂系,以程海断裂、小江断裂等为代表;(3)NE-SW走向的断裂,如丽江-剑川断裂、鹤庆-洱源断裂和南定河断裂等。这些断裂的震源机制解表明地震断裂活动性或者是走滑性质或者是伸展属性,它们的组合型式也揭示出藏东南三江地区在上新世以来表现为近E-W向的伸展。区域上,在藏东北部地区发育的断层构造组合普遍反映了以近E-W向挤压为主导的应力场。推测这一现象为上新世以来藏东地区上地壳围绕喜马拉雅东构造结做顺时针旋转所致,区域上受印度-欧亚会聚过程中印度板块顺时针旋转诱发的差异性应力场制约。  相似文献   

5.
要通过在TM遥感图像解译和野外观测的基础上,描述了东昆仑断裂带东段活动形迹的组成和活动断层地貌特征,阐述了甘南高原西秦岭地区新近纪拉分盆地的沉积-构造特征,提出了该区东昆仑-秦岭断裂系晚新生代左旋走滑伸展-走滑挤压-走滑伸展的3个阶段的构造变形模式。指出,中新世晚期至上新世早期,东昆仑-秦岭断裂系以左旋走滑伸展活动为主,伴随着西秦岭地区拉分盆地的形成和超基性火山岩群的发育。这期左旋走滑伸展活动向东扩展导致了渭河盆地新近纪引张应力方向由早期的NE-SW向转变为晚期的NW—SE向。上新世晚期以来(约3.4Ma以前),东昆仑-秦岭断裂系以左旋走滑挤压活动为主,导致早期拉分盆地的轻微褶皱变形,走滑挤压活动主要集中在东昆仑东段玛沁-玛曲主断裂带上。该期构造变动持续到早更新世,它的向东扩展产生了广泛的地壳形变效应,包括青藏东缘岷山隆起带的快速崛起、华北地区汾-渭地堑系的形成和发展以及郯庐断裂带右旋走滑活动等。中、晚更新世时期,断裂系以走滑伸展变形为主,主要集中在东昆仑断裂带东段3个分支上,地块向东挤出伴随着顺时针旋转。  相似文献   

6.
歧口凹陷及周缘新生代构造的成因和演化   总被引:21,自引:9,他引:21  
歧口凹陷及周缘构造带发育不同方向的新生代断层,主要包括NE、NNE、NEE、近EW和NW向等,从运动学平衡角度推测这些断层均应不同程度地表现为具走滑分量的正断层或上盘斜落的走滑断层。本文提出一个双动力过程模式来解释歧口凹陷及周缘构造带的形成和演化。始新世时主要发生NWW—SEE向区域裂陷伸展,形成NE—NNE向正断层和NEE—近EW向传递断层;渐新世时,受纵贯研究区的NNE向深断裂右旋走滑的影响,叠加了SN向的局部伸展,形成大量NEE—近EW向盖层正断层。晚第三纪时NNE向区域性伸展作用基本停止,深断裂仍继续右旋走滑活动,引起盆地区断层进一步活动。  相似文献   

7.
In the north-western Bonaparte Basin (North West Shelf of Australia) Neogene to Recent flexure-induced extension superimposed obliquely over the Mesozoic rift structures. Thus, the area offers a good opportunity to investigate the dynamics and architecture of oblique extension fault systems. Analysis of basin-scale 2D and 3D seismic data along the Vulcan sub-basin shows that Neogene deformation produced a new set of extensional, en échelon faults, at places accompanied by the reactivation of the Mesozoic faults. The pre-existing Mesozoic structures strongly control the distribution of the Neogene-Recent deformation, both at regional and local scales. Main controls on the Neogene-Recent fault style, density and segmentation/linkage include: (1) the orientation of the underlying Mesozoic structures, (2) the obliqueness of the younger extension relative to the rift-inherited faults, and (3) the proximity to the Timor Trough. Three types of vertical relationships have been observed between Mesozoic and Neogene-Recent faults. Hard linkages seems to develop when both fault systems trend parallel, therefore increasing risks for trap integrity. It is suggested that the orientation of maximum horizontal stress (SHmax) relative to the Mesozoic faults, forming hydrocarbon traps, is critical for their potential seal/leak behaviour. Stratigraphic growth across the faults indicates that main fault activity occurred during the Plio-Pleistocene, which corresponds to the timing of tectonic loading on Timor Island and the development of lithospheric flexure. Synchronism of normal faulting with flexural bending suggests that extensional deformation on the descending Australian margin accompanied the formation of the Timor Trough.  相似文献   

8.
The Atuel depocenter of the Neuquén basin originated as an Upper Triassic to Lower Jurassic rift system, later inverted during the Andean contractional deformation. In order to study the extensional architecture and the kinematic evolution of this depocenter, we collected a large amount of field and sub-surface data, consisting of slip data from outcrop-scale normal faults, thickness and facies distribution within the synrift deposits, and structural data from angular and progressive unconformities. The Atuel depocenter has a NNW trend, showing a bimodal distribution of NNW and WNW major faults (first and second order faults). On the other hand, from kinematic indicators measured on outcrop-scale faults (third and fourth order faults), we found a mean NE internal extension direction, which is oblique to the general trend of the sub-basin. Taking these particular characteristics into account, we interpreted the Atuel depocenter as an oblique rift system. We evaluated two mechanisms in order to explain the development of this transtensional system: 1) reactivation of upper-crustal NNW-oriented Paleozoic shear zones, and 2) oblique stretching of a previous NNW-oriented lithospheric weakness zone.  相似文献   

9.
基于"同一应力场不同边界条件形成不同性质断层"的构造解析原理,认为海拉尔盆地断陷期受南南东—北北西向拉张应力场作用,形成北北东和北东东向断裂,北北西向断裂明显走滑变形。断-坳转化期拉张应力场方位调整为近东西向,形成近南北向断裂,北北东、北东东和北北西向断裂扭动变形。伊敏组沉积末期盆地回返,受近东西向挤压应力场控制盆地左旋压扭变形,北北东和北东东向断裂强烈反转。依据断裂变形特征叠加关系,海拉尔盆地形成4套断裂系统:早期伸展断裂、中期张扭断裂、早期伸展中期张扭断裂和早期伸展中期张扭晚期反转断裂。断陷构造层早期伸展中期张扭反向断裂形成断层遮挡圈闭,早期伸展断裂将凹中隆和斜坡切割破碎形成断层复杂化的背斜圈闭,早期伸展断裂与中期张扭断裂交叉组合,形成复杂的断块圈闭。断-坳构造层早期伸展中期张扭晚期反转断裂呈"梳状"组合,形成典型的断块圈闭。基于断裂活动时期与成藏期耦合关系以及典型油气藏解剖的结果认为,早期伸展和早期伸展中期张扭断裂在成藏关键时刻为遮挡断层,且封闭的烃柱高度一般均小于圈闭的幅度,早期伸展中期张扭晚期反转断裂为调整型断层。基于圈闭的样式、断层在成藏中的作用及输导体系分析,海拉尔盆地断裂控藏模式分为二型4类,二型为原生油藏和次生油藏。原生油藏包括3类:一是灶缘油气侧向运移反向断层遮挡成藏模式,控藏断裂为早期伸展中期张扭断裂系统;二是灶内油气初次运移断层遮挡"箱内"成藏模式;三是灶内凹中隆油气侧向运移"弥散式"成藏模式。这两种模式控藏断裂均为早期伸展断裂。次生油藏为油气沿断裂垂向运移"伞式"成藏模式,控藏断裂为早期伸展中期张扭晚期反转断裂系统。  相似文献   

10.
The Cuzco region, which is located above a change in subduction geometry, appears to be characterized by a variable Plio-Quaternary tectono-sedimentary evolution essentially located along the major fault system that separates the High Plateaux from the Eastern Cordillera. After the higher surface formation of the High Plateaux, a set of Neogene basins were filled by Miocene “ fluvio-torrential” series and by Plio-Pleistocene fluvio-lacustrine deposits. The Neogene series have been affected by compressional tectonic forces attributed to the Late Miocene. This compression is followed by roughly E-W trending syn-sedimentary extensional tectonics attributed to the Pliocene; it is related to reactivation of the pre-existing major faults, basin evolution, and volcanic activity concentrated along the faults. In the Early Pleistocene, fluvio-lacustrine deposits are affected by syn- and post-sedimentary compressional tectonism it is characterized by shortening that trends both N-S and E-W and produces folding and faulting of the sedimentary cover. Extensional tectonism trending roughly N-S has been taking place from the Middle Pleistocene to the Present; it is coeval with shoshonitic volcanic activity, and with sedimentation of fluvio-lacustrine terraces, torrential fans and moraines. Quaternary and active normal faults due to this tectonism, are located in a narrow zone more than 100 km-long between the High Plateaux and the Eastern Cordillera, and two 15 km-long fault sectors in the Eastern Cordillera. Characteristic Pleistocene scarps, 400 m or more high, are due to the cumulative normal offset, and there are also little scarps, with heights ranging between 2 and 20 m, which are related to Holocene fault reactivations. Recent fault reactivation on the Cuzco fault system, during the April 5, 1986 earthquake (mb = 5.3), is due to the N-S trending extension. This state of stress, located at a mean elevation of roughly 3730 m, is generally homogeneous to different scales. The active Cuzco normal faults may be a consequence of adjustment between the compensated Western Cordillera and the undercompensated Eastern Cordillera, this latter being uplifted higher than its isostatic equilibrium due to compression acting on its eastern edge. The variation of the state of stress, during the Plio-Quaternary is in agreement with the variations of the compressional boundary forces. It may be explained by variation of the convergence rate or by the variation of pull-slab forces.  相似文献   

11.
The Andean foreland basin overlaps the Cretaceous-Paleogene Salta rift basin in northwestern Argentina. Knowledge of the relationship between rift and foreland basins is key to understanding the initial stages of foreland basin development related to Andean shortening. We present a new stratigraphic scheme for the Luracatao Valley, revealing that the Quebrada de los Colorados Formation (Payogastilla Group) lies over the Santa Bárbara Subgroup (Salta Group) through an erosional unconformity that turns into an angular unconformity close to folds and faults recorded in the Santa Bárbara Subgroup. The base of the Quebrada de los Colorados Formation shows growth strata along the west frontal limb of an anticline with Santa Bárbara units in its core. The finding of a mammalian fossil at the base of the Quebrada de los Colorados Formation allows us to assign a Middle-Upper Eocene age to the sedimentation; therefore, the time elapsed between the deposition of the final postrift strata and the beginning of Andean sedimentation was brief and constrained to the Lower-Middle Eocene. This data indicates that the Eocene deformation phase described in other portions of the Puna-Cordillera Oriental transition (e.g., the northern Calchaquí Valley and Aguilar range) is also present in the Luracatao Valley, offering new tools for interpreting the ages and distributions of the initial episodes of sedimentation and deformation related to the Andean shortening. Thus, the Luracatao Valley provides new evidence for tracking the distribution of the Paleogene deformation in northwestern Argentina.  相似文献   

12.
The NW-trending Bucaramanga fault links, at its southern termination, with the Soapaga and Boyacá faults, which by their NW trend define an ample horsetail structure. As a result of their Neogene reactivation as reverse faults, they bound fault-related anticlines that expose the sedimentary fill of two Early Jurassic rift basins. These sediments exhibit the wedge-like geometry of rift fills related to west-facing normal faults. Their structural setting was controlled further by segmentation of the bounding faults at approximately 10 km intervals, in which each segment is separated by a transverse basement high. Isopach contours and different facies associations suggest these transverse anticlines may have separated depocenters of their adjacent subbasins, which were shaped by a slightly different subsidence history and thereby decoupled. The basin fill of the relatively narrow basin associated with the Soapaga fault is dominated by fanglomeratic successions organized in two coarsening-upward cycles. In the larger basin linked to the Boyacá fault, the sedimentary fill consists of two coarsening-upward sequences that, when fully developed, vary from floodplain to alluvial fan deposits. These Early Jurassic rift fills temporally constrain the evolution of the Bucaramanga fault, which accommodated right-lateral displacement during the early Mesozoic rift event.  相似文献   

13.
An integrated interpretation of seismicity, fault plane solutions and deep seismic reflection data suggests that the NE–SW to NW–SE trending Rhone–Simplon fault zone and the gently S-dipping basal Penninic thrust separate fundamentally different stress regimes in the western Swiss Alps. North of the Rhone-Simplon fault zone, strike-slip earthquakes on steep-dipping faults within the Helvetic nappes are a consequence of regional NW–SE compression and NE–SW extension. To the south, vertical maximum stress and N–S extension are responsible for normal mechanism earthquakes that occur entirely within the Penninic nappes above the basal Penninic thrust. Such normal faulting likely results from extension associated with southward movements (collapse) of the Penninic nappes and/or continued uplift and relative northward displacements of the underlying Alpine massifs. Geological mapping and fission-track dating suggest that the two distinct stress regimes have controlled tectonism in the western Swiss Alps since at least the Neogene.  相似文献   

14.
This paper discusses the Neogene tectonic evolution of the Tunisia offshore Gulf of Hammamet basin. Based on seismic and well data, this basin was created during the Miocene and is currently trending NE–SW. During the Neogene, the study area was affected by geodynamic interactions controlled simultaneously by convergence of the Eurasia and Africa plates and the opening of the Atlantic Ocean. These interactions generated compressive and extensional regimes which led to a variety of structures and basin inversions.The middle Miocene extensional regime created horst and graben structures (e.g. the Halk El Menzel graben). The two major compressive phases of the Tortonian and post Villafranchian age created different structures such as Ain Zaghouan and Fushia structures and the Jriba trough, and led to the reactivation of the old normal faults as reverse faults. During the Plio-Pleistocene and the Quaternary times, the Gulf of Hammamet was affected by an extensional regime related to the Siculo-Tunisian rift, which led to the development in the area of several sedimentary basins and new normal fault patterns.The Gulf of Hammamet shows several basins ranging in age from the Tortonian to the Quaternary, which display different structural and stratigraphic histories. Two main groups of sedimentary basins have been recognized. The first group has Tortonian–Messinian sedimentary fill, while the second group is largely dominated by Plio-Quaternary sediments. The shortening during the Tortonian and post Villafranchian times has led to the tectonic inversion of these basins. This shortening could be correlated to the Europe–Africa collision.Despite the large number of hydrocarbon discoveries, the Gulf of Hammamet remains under-explored, in particular at deeper levels. This study aims to guide future exploration and to highlight some new play concepts.  相似文献   

15.
《Geodinamica Acta》2003,16(2-6):131-147
Combining fieldwork and surface data, we have reconstructed the Cenozoic structural and tectonic evolution of the Northern Bresse. Analysis of drainage network geometry allowed to detect three major fault zones trending NE–SW, E–W and NW–SE, and smooth folds with NNE trending axes, all corroborated with shallow well data in the graben and fieldwork on edges. Cenozoic paleostress succession was determined through fault slip and calcite twin inversions, taking into account data of relative chronology. A N–S major compression, attributed to the Pyrenean orogenesis, has activated strike-slip faults trending NNE along the western edge and NE–SW in the graben. After a transitional minor E–W trending extension, the Oligocene WNW extension has structured the graben by a collapse along NNE to NE–SW normal faults. A local NNW extension closes this phase. The Alpine collision has led to an ENE compression at Early Miocene. The following WNW trending major compression has generated shallow deformation in Bresse, but no deformation along the western edge. The calculation of potential reactivation of pre-existing faults enables to propose a structural sketch map for this event, with a NE–SW trending transfer fault zone, inactivity of the NNE edge faults, and possibly large wavelength folding, which could explain the deposit agency and repartition of Miocene to Quaternary deformation.  相似文献   

16.
The Tan-Lu fault zone (TLFZ) traverses the Liaohe western depression (LHWD), affords an exceptional opportunity to reveal the structural deformation and evolution of a major strike-slip fault of the LHWD using three dimensional seismic data and well data. In this paper, based on structural interpretations of the 3-D seismic data of the LHWD, combined with depth slice and seismic coherency, a variety of structural features in relation to right-lateral strike-slip fault (the western branch of the Tan-Lu fault) have been revealed presence in the depression, such as thrust faults (Xinlongtai, Taian-Dawa, and Chenjia faults), structural wedges, positive flower structures, and en echelon normal faults. Fault cutoffs, growth strata and the Neogene unconformity developed in the LHWD verify that the activity of right-lateral strike-slip from the late Eocene to Neogene (ca. 43–23 Ma). The study indicates that the right-lateral strike-slip played an important role in controlling the structural deformation and evolution of the LHWD in the early Cenozoic. Moreover, the front structural wedge generated the gross morphology of the Xinlongtai anticline and developed the Lengdong faulted anticline during the late Eocene, and the back structural wedge refolded the Lengdong faulted anticline zone in the late Eocene to the early Oligocene. Wrench-related structures (the Chenjia thrust fault and the en echelon normal faults) were developed during the late Oligocene. Uniform subsidence in the Neogene to Quaternary. Furthermore, the driving force of the right-lateral strike-slip deformation was originated from N–S extension stress related to the opening of the Japan Sea and NE–SW compression, as the far-field effect of India–Eurasia convergence.  相似文献   

17.
The seismically active Okavango Rift in northwestern Botswana is probably the southern extension of the East Africa Rift System. Relief is low and many of the geomorphic features of the incipient rift are subtle. The northeast-southwest trending Kunyere and Thamalakane Faults form the southeastern boundary of the rift. Proterozoic structural fabrics of similar trend, belonging to the Ghanzi-Chobe Belt, control the regional trend of the primary Cenozoic fault set of the rift. Geophysical evidence indicates that these are dominantly normal faults forming boundaries to northeast-southwest trending strips of horsts, grabens and half grabens. Two other major sets trend northwest-southeast and north-south. The northwest-southeast set occurs within the interfault strips of the major northeast-southwest trending faults. The latter act as local transfer faults forming boundaries to stress domains within which the secondary northwest-southeast trending faults are produced. Remote sensing imagery shows a weakly developed north-south set that is spatially associated with, and truncated by the northwest-southeast set. The whole fault system probably produces predominantly dip-slip displacements on multiple fault sets responding to a subcontinental east- west extension.  相似文献   

18.
The geometry of several thrust-related folds in the Central Apennines of Italy results from a switch in deformation regime, from extension to contraction. This switch in tectonic regime occurred during the deposition of syn-orogenic sediments, and the emplacement and migration of the thrust belt–foredeep system towards the foreland in Neogene time. The styles of positive tectonic inversion result from normal faults that were steepened, rotated and truncated by thrusts, with local development of minor folds due to buttressing. Normal fault-controlled escarpments are also locally preserved in the forelimbs and backlimbs of thrust-related anticlines. The location and amplitudes of contractional structures across the belt reflects the distribution of pre-thrusting normal faults within precursor syn-orogenic basins, a result that may improve our understanding of the evolution of Apennine, as well as other thrust belt–foredeep systems.  相似文献   

19.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   

20.
目前,针对渤海南部潜山地层结构、构造演化的研究较少.应用三维地震资料、钻井资料,系统分析了该区潜山断裂类型、地层构造类型、成因演化和动力学背景.研究表明,近南北向郯庐走滑断裂和近东西向反转断裂共同控制了研究区潜山地层分布,进而造成了研究区潜山地层的结构、构造差异.近南北向郯庐走滑断裂为调节东西两侧挤压强度差异的同印支造山期断层.郯庐走滑断裂西支以西挤压变形强度相对较弱,普遍发育古生界薄底或秃底构造,以"中生界+古生界+前寒武系"三层结构为主;以东挤压变形作用则相对较强,表现为强烈隆升,古生界剥蚀殆尽,为"中生界+前寒武系"双层结构,花状走滑构造发育.近东西向反转断层为印支期逆冲断层,燕山期伸展反转,现今断裂上升盘残存古生界,下降盘古生界剥蚀殆尽.横向挤压收缩差异是导致研究区潜山地层结构、构造差异的主要原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号