首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geomagnetism and Aeronomy - A geomagnetic storm is a major disturbance in the Earth’s magnetosphere due to the solar wind entering the magnetosphere and ionosphere, lasting about 1–3...  相似文献   

2.
This tutorial review examines the role of O+ in the dynamics of magnetosphere–ionosphere coupling. The life cycle of an O+ plasma element is considered as it circulates from the mid- to high-latitude ionosphere. Energization and diversion of the convecting plasma element into outflows involves Alfvénic turbulence at the low-altitude base of the cusp and plasmasheet boundary layer and in downward-current “pressure cookers.” Observational evidence indicating that O+ dominates the plasmasheet and ring current during extreme storm intervals is reviewed. The impacts of an O+-enriched plasma on solar wind–magnetosphere–ionosphere coupling are considered at both the micro and global scales. A synthesis of results from observation, theory and simulations suggests that the presence of O+ in the magnetosphere is both a disruptive and a moderating agent in maintaining the balance between dayside and nightside magnetic merging.  相似文献   

3.
The relation of the fluxes of relativistic electrons in geostationary orbit during magnetic storms to the state of the magnetosphere and variations in the solar wind parameters is studied based on the GOES satellite data (1996–2000). It has been established that, in ~52–65% of all storms, the fluxes of electrons with energies higher than 0.6 and 2 MeV during the storm recovery phase are more than twice as high as the electron fluxes before a storm. It has been indicated that the probability of such cases is closely related to the prestorm level of fluxes and to a decrease in fluxes during the storm main phase. It has been found that the solar wind velocity on the day of the storm main phase and the geomagnetic activity indices at the beginning of the storm recovery phase are also among the best indicators of occurrence of storms with increased fluxes at the storm recovery phase.  相似文献   

4.
Dayside near-polar auroral brightenings occur when interplanetary shocks impinge upon the Earth's magnetosphere. The aurora first brightens near local noon and then propagates toward dawn and dusk along the auroral oval. The propagation speed of this wave of auroral light is 10 km s-1 in the ionosphere. This speed is comparable to the solar wind speed along the outer magnetosphere. The fundamental shock-magnetospheric interaction occurs at the magnetopause and its boundary layer. Several physical mechanisms transferring energy from the solar wind directly to the magnetosphere and from the magnetosphere to the ionosphere are reviewed. The same physical processes can occur at other solar system magnetospheres. We use the Haerendel (1994) formulation to estimate the acceleration of energetic electrons to 50 keV in the Jovian magnetosphere/ionosphere. Auroral brightenings by shocks could be used as technique to discover planets in other stellar systems.  相似文献   

5.
The interval 0000-1400 UT of the superstorm of November 20, 2003, has been studies based on the ACE/WIND data and the MIT2 magnetogram inversion technique. The distributions of the electric potential and currents, field-aligned currents, and Joule heat in the ionosphere have been calculated. The variable magnetotail length and powers coming into the magnetosphere, ionosphere and ring current have been estimated. The selected superstorm intervals, when it became possible to identify the disturbance mode produced by the interaction between the variable solar wind dynamic pressure and IMF effects, have been described. Spontaneous substorms, two types of driven responses to changes in IMF or in the solar wind dynamic pressure (P d ), zero events at simultaneous jumps of IMF and P d , and a previously unknown mode of saturation of the ionospheric electric field at a redistribution of the energy coming into the magnetosphere between the ionosphere and ring current are among the selected modes.  相似文献   

6.
We report on the first comprehensive numerical simulation of a space weather event, starting with the generation of a CME and subsequently following this transient solar wind disturbance as it evolves into a magnetic cloud and travels through interplanetary space towards Earth where its interaction with the terrestrial magnetosphere–ionosphere system is also predicted as part of the simulation.  相似文献   

7.
This paper presents a brief review of selected publications concerning dynamical chaos and persistence in various solar–terrestrial phenomena ranging from solar activity to climate dynamics. It draws attention to the advanced approaches known in many research areas (meteorology, hydrology, biology, economics, etc.), but not yet sufficiently used in solar–terrestrial physics. First, we introduce the concepts of dynamical (deterministic) chaos and fractional Brownian motion. Next, we discuss appropriate methods—fluctuation analysis and nonlinear time series analysis—for treatment of erratic time series based on these concepts. We outline some pitfalls and problems in the application of the discussed methods to empirical data. Finally, we present selected empirical evidence for persistence and dynamical chaos in solar activity, solar wind, magnetosphere and ionosphere, weather and climate systems.  相似文献   

8.
The paper presents a three-dimensional quantitative model of Mercury's magnetosphere based on the entire combined set of observational data obtained from the first and third encounters of Mariner 10 with Mercury. The model assumes that the surface magnetic field of the planet Mercury consists of a dipole, a quadrupole and an octupole. The dipole moment of Mercury is 2.4 × 1022 G cm3, tilted 2.3° from the normal to the planetary orbital plane and having the same directional sense as that of the Earth. The intensity of the quadrupole moment is approximately 45% of the dipole, and that of the octupole moment 29% of the dipole. The model meets four critical tests: (1) it produces the smallest residuals among all existing models, (2) it can reproduce the crossing of a tail current sheet by Mariner 10, (3) all planetary field lines are confined inside the model magnetosphere, and (4) the size of the model magnetosphere agrees well with the magnetopause crossings directly observed from Mariner 10. The model can also be used to explain two observational features: (1) the plasma characteristics observed in different regions of the magnetosphere, and (2) the regions of quiet and disturbed signatures directly observed from Mariner 10.  相似文献   

9.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

10.
Electromagnetic fields and currents connect various regions of the earth's near space environment extending upto the magnetopause. Realization of this fact has lead to the concept of Global Electric Circuit (GEC) to describe the electromagnetic environment of the earth's atmosphere. Solar wind - magnetosphere - ionosphere coupling forms a vital component of GEC. Magnetospheric substorms represent a global interaction between the solar wind, the magetosphere, and the ionosphere. This article gives an overview of the solar wind - magnetosphere- ionosphere coupling processes with emphasis on the nonlinear particle dynamics in the magnetotail. Those aspects of the substorm processes which involve the chaotic dynamics are highlighted. Various methods based on nonlinear particle dynamics, linear prediction filtering techniques, phase space reconstruction techniques, and dynamical anologue models of geomagnetic activity are reviewed. It is shown that the solar wind- magnetosphere - ionosphere system behaves as a strongly coupled nonlinear dynamical system which could be driven from regular to chaotic behavior with low dimensionality when the solar wind forcing is strong enough.  相似文献   

11.
Ultra low frequency (ULF) waves incident on the Earth are produced by processes in the magnetosphere and solar wind. These processes produce a wide variety of ULF hydromagnetic wave types that are classified on the ground as either Pi or Pc pulsations (irregular or continuous). Waves of different frequencies and polarizations originate in different regions of the magnetosphere. The location of the projections of these regions onto the Earth depends on the solar wind dynamic pressure and magnetic field. The occurrence of various waves also depends on conditions in the solar wind and in the magnetosphere. Changes in orientation of the interplanetary magnetic field or an increase in solar wind velocity can have dramatic effects on the type of waves seen at a particular location on the Earth. Similarly, the occurrence of a magnetospheric substorm or magnetic storm will affect which waves are seen. The magnetosphere is a resonant cavity and waveguide for waves that either originate within or propagate through the system. These cavities respond to broadband sources by resonating at discrete frequencies. These cavity modes couple to field line resonances that drive currents in the ionosphere. These currents reradiate the energy as electromagnetic waves that propagate to the ground. Because these ionospheric currents are localized in latitude there are very rapid variations in wave phase at the Earth’s surface. Thus it is almost never correct to assume that plane ULF waves are incident on the Earth from outer space. The properties of ULF waves seen at the ground contain information about the processes that generate them and the regions through which they have propagated. The properties also depend on the conductivity of the Earth underneath the observer. Information about the state of the solar wind and the magnetosphere distributed by the NOAA Space Disturbance Forecast Center can be used to help predict when certain types and frequencies of waves will be observed. The study of ULF waves is a very active field of space research and much has yet to be learned about the processes that generate these waves.  相似文献   

12.
By using Tsyganenko's model for the magnetosphere's magnetic field, which links two hemispheres of the ionosphere, and adopting a practical boundary condition for the electric potential around the polar cap, we developed a new ionosphere–magnetosphere coupling model based on prairie view dynamo code (PVDC). The new model takes the variations in solar wind and interplanetary magnetic field, as well as the geomagnetic activity, into account. Rather than the previous version of PVDC that is useful only for quiet conditions, the new model enables to calculate the electric potential and currents in the ionosphere and the field-aligned current (FAC) off the ionosphere in quiet and disturbed times. Comparison of the calculated FAC with the measurements of Space Technology 5 (ST5) mission shows a good agreement.  相似文献   

13.
The ring current is conventionally considered responsible for the shift of the boundary of solar proton penetration into the inner Earth’s magnetosphere during magnetic storms. The cases of a boundary shift were observed in some works on the dark side before the onset of a magnetic storm, i.e., at positive values of the Dst index. In this work, this type of shift of the penetration boundary is considered in detail with two storms as examples. It is shown that the corresponding distortion of the magnetosphere configuration is induced by an increase in the solar wind pressure during the initial phase of a magnetic storm. The current induced in this case on the magnetopause is closed by a current in the equator plane, which changes the configuration of the dark side of the inner magnetosphere, weakens the magnetic field, and allows solar protons to penetrate the inner magnetosphere. The significant difference in the positions of the penetration boundary and the boundary found from models of the magnetosphere magnetic field can be explained by insufficient consideration of closing currents.  相似文献   

14.
This paper reviews some aspects of solar wind–magnetosphere–ionosphere interaction. It is shown that in addition to the interplanetary electric field, the solar wind dynamic pressure also has a significant role in determining the state, dynamics, and energetics of the system. It is demonstrated how the state of the magnetosphere and the prior driving affect the amount of energy input to the system, which highlights the capability of the magnetosphere to control the energy flow. The active role of the magnetosphere in determining the dynamics is illustrated by statistical results of the flux balance in the magnetotail and the various dynamic cycles the system can enter. The inner magnetosphere processes during storms are shown to be a result of a complex interplay of processes at the magnetopause and in the magnetotail in response to the solar wind driving. The conclusions are drawn from statistical observational results, empirical models, and global MHD simulations.  相似文献   

15.
Spatial-temporal and spectral features of ground geomagnetic pulsations in the frequency range of 1–5 mHz at the initial phase of a strong magnetic storm of the 24th cycle of solar activity (August 5–6, 2011, with a Dst-variation in the storm maximum of ?110 nT) are analyzed. Large opposite in sign amplitudes of variations in IMF parameters (from ?20 to +20 nT) at a high velocity of the solar wind (~650 km/s) accompanied by intense bursts in solar-wind density (up to ~50 cm?3) were distinctive feature of interplanetary medium conditions causing the storm. Geomagnetic Pi3 pulsations global in longitude and latitude and in-phase in the middle and equatorial latitudes were found. The onset of pulsation generation was caused by a pulse of dynamic pressure of the solar wind (~20 nPa), i.e., by a considerable compression of the magnetosphere. The maximum (2–3 mHz) in the amplitude spectrum of near-equatorial pulsations coincided with the maximum of pulsations in the daytime polar cap. After the next jump of the dynamic pressure of the solar wind (~35 nPa), an additional maximum appeared in the pulsation spectrum in the frequency band of ~3.5–4.5 mHz. Global pulsations suddenly stopped after a sharp decrease in the solar-wind dynamic pressure and corresponding extension of the magnetosphere. The obtained results are compared with the time dynamics of the position and shape of the plasmapause.  相似文献   

16.
17.
An abrupt decrease in the solar wind pressure and its effect on the magnetosphere and ionosphere during the event occurring on April 4, 1971, are studied. This event differs fundamentally from a typical sudden commencement (SC) of a geomagnetic storm or from a positive sudden impulse (SI+) and is determined as a negative sudden impulse (SI). The geomagnetic variations at different latitudes and the cosmic radio emission in the auroral zone are analyzed. From the data of low-latitude geomagnetic observatories, several subsequent negative impulses observed with a periodicity of ~45 min were found. At the same time, a sudden decrease in the absorption of cosmic radio emission in the auroral zone was revealed. Possible physical explanations of the observed changes are discussed.  相似文献   

18.
Transition current systems can be generated in the Earth’s magnetosphere at a simultaneous sudden change in the solar wind dynamic pressure and IMF northward turning from an almost horizontal direction. The distribution of the field-aligned currents in the transition current system depending on the IMF components has been calculated. The conditions of formation of transition current systems in the Saturn’s magnetosphere and possible manifestations of these systems in the high-latitude ionosphere have been considered. The obtained results have been compared with observations.  相似文献   

19.
Devi  M.  Patgiri  S.  Barbara  A. K.  Gordiyenko  G.  Depueva  A.  Depuev  V.  Ruzhin  Yu. Ya. 《Geomagnetism and Aeronomy》2018,58(7):857-870
Geomagnetism and Aeronomy - Geomagnetic storm is one of the major disturbances in Earth’s magnetosphere and its effect on ionosphere is a well studied area, yet there are a few aspects still...  相似文献   

20.
We evaluate the potential of imaging for the first time, the near-earth space plasma environment seamlessly from the ionosphere through the magnetosphere by remotely sensing Thomson scattering of solar visible light by geospace electrons. Using state of the art first principles models of the magnetosphere/ionosphere system, we show that the column emission rates are weak, generally less than 10 Rayleighs, but detectable with currently available instrument technology recently deployed for heliospheric imaging. We demonstrate that distinct features such as the bow shock, magnetosheath and magnetopause are detectable in synthetic images simulated using modified solar coronagraphs and white light imagers, providing that the large background signals are properly quantified. The availability of global geospace images of the electron concentration will enable major advances in our understanding of how Earth's near-space environment responds as a coupled system to changing solar forcings. Such images are expected to play a central role in space weather assessment and forecasting, from which significant capabilities will accrue, much as the imaging of the Earth's surface and lower atmosphere has advanced understanding and forecasting of tropospheric weather.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号