首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Takashi Sakurai 《Solar physics》1983,86(1-2):339-344
Potential field computations have been carried out to study the location of hard X-ray sources observed by the HINOTORI hard X-ray imaging instrument, SXT. Of the two flares studied, the X-ray source of the 1981 May 13 event, a very unusual gradual flare, appears to lie at the top of an arcade of field lines. In the other event, the 1981 October 15 flare, the observed double source structure is not explained in the present computation, implying the existence of non-negligible electric currents in the flare region.  相似文献   

2.
From an inter-comparison among TRACE, RHESSI, and Hα images of the X4.8 flare of 2002 July 23, we found it to be a typical two-ribbon flare. The Hα and TRACE 195Å images are all shown to have the two-ribbon pattern, while the TRACE 195Å images show also a loop-arch whose footpoints deviate slightly from the ribbons. The TRACE 195Å ribbons match well the higher energy hard X-ray images. During the impulsive phase, the hard X-ray images above 38 keV present a low-lying loop connecting the two ribbons of TRACE 195Å. Above the low-lying loop, there is a coronal low energy hard X-ray source. The spatial structure and evolutionary patterns as a whole are presented. Possible theoretical explanations are briefly discussed.  相似文献   

3.
We describe observations of three flares made at 5 and 15 GHz with the VLA, two subflares near the limb on 1981 November 21 and 22, and an M7.7 flare on 1981 May 8. Even though the time histories of the November flares indicated simple impulsive bursts, the VLA observed no 5 GHz radiation at all from one flare, and from the other, the 15 GHz radiation emanated from a source which was smaller, lower and displaced from the 5 GHz source. Without the spatial information, we would have derived incorrect results from the assumption that photons of different energy (both at X-ray and radio wavelengths) arose from one homogeneous volume. The 1981 May 8 flare was intense and complex, having two. or more sources at both 5 and 15 GHz. Prior to the peak of the flare, the sources grew in size to > 20″ to 40″, after which they were not visible to the VLA; only (weak) subsources could be seen. These were located between or at the edge of the Hα ribbons and the two hard X-ray sources imaged by the Hinotori. Highly polarized, bursty radiation observed at Toyokawa at 1 and 2 GHz, indicated that an electron-cyclotron maser operated during the flare. We derive 360 to 660 gauss as the maximum field strength in flaring loops.  相似文献   

4.
This work investigates the spatial relation between coronal X-ray sources and coherent radio emissions, both generally thought to be signatures of particle acceleration. Two limb events were selected during which the radio emission was well correlated in time with hard X-rays. The radio emissions were of the type of decimetric pulsations as determined from the spectrogram observed by Phoenix-2 of ETH Zurich. The radio positions were measured from observations with the Nançay Radioheliograph between 236 and 432 MHz and compared to the position of the coronal X-ray source imaged with RHESSI. The radio pulsations originated at least 30?–?240 Mm above the coronal hard X-ray source. The altitude of the radio emission increases generally with lower frequency. The average positions at different frequencies are on a line pointing approximately to the coronal hard X-ray source. Thus, the pulsations cannot be caused by electrons trapped in the flare loops, but are consistent with emission from a current sheet above the coronal source.  相似文献   

5.
6.
The M7.7 solar flare of July 19, 2012, at 05:58 UT was observed with high spatial, temporal, and spectral resolutions in the hard X-ray and optical ranges. The flare occurred at the solar limb, which allowed us to see the relative positions of the coronal and chromospheric X-ray sources and to determine their spectra. To explain the observations of the coronal source and the chromospheric one unocculted by the solar limb, we apply an accurate analytical model for the kinetic behavior of accelerated electrons in a flare. We interpret the chromospheric hard X-ray source in the thick-target approximation with a reverse current and the coronal one in the thin-target approximation. Our estimates of the slopes of the hard X-ray spectra for both sources are consistent with the observations. However, the calculated intensity of the coronal source is lower than the observed one by several times. Allowance for the acceleration of fast electrons in a collapsing magnetic trap has enabled us to remove this contradiction. As a result of our modeling, we have estimated the flux density of the energy transferred by electrons with energies above 15 keV to be ~5 × 1010 erg cm?2 s?1, which exceeds the values typical of the thick-target model without a reverse current by a factor of ~5. To independently test the model, we have calculated the microwave spectrum in the range 1–50 GHz that corresponds to the available radio observations.  相似文献   

7.
Observations of emission in the Mgi b2 line at 5172 Å are presented for 13 flares. Also discussed are 3 flares which occurred in regions under observation but which showed no Mg emission. The Mg flare kernels resemble white-light flare kernels in their general morphology and location. Comparison of Mg filtergrams with magnetograms indicates that the Mg kernels occur at the feet of magnetic arches across neutral lines. Time-lapse Mg filtergram films indicate photospheric shearing motions near flare sites for several hours before flare onset. We have compared flare Mg emission with microwave and both hard and soft X-ray flare emissions. Examination at the time development of the 1981, July 27 flare shows that the microwave and X-ray bursts may be clearly related to the appearance of successive Mg flare kernels. We have also compared subjective, relative Mg flare importances with other flare emission measurements. For the full sample of flares, Mg importance is significantly correlated with hard and soft X-ray emission peaks, with X-ray ‘hardness’ (ratio of hard to soft peaks) and with the rise slope of soft X-ray bursts. The Mg importance does not correlate with the microwave peaks when the full sample of flares is used, but for the subset showing Mg emission there is significant correlation. No correlation with Hα importance was found. Our results suggest that Mg emission is associated with an impulsive component which may be absent from some flares. The San Fernando Observatory magnesium etalon filter system is described.  相似文献   

8.
Simultaneous X-ray images in hard (20–40 keV) and softer (6.5–15 keV) energy ranges were obtained with the hard X-ray telescope aboard the Hinotori spacecraft of an impulsive solar X-ray burst associated with a flare near the solar west limb.The burst was composed of an impulsive component with a hard spectrum and a thermal component with a peak temperature of 2.8 × 107 K. For about one minute, the impulsive component was predominant even in the softer energy range.The hard X-ray image for the impulsive component is an extended single source elongated along the solar limb, rather steady and extends from the two-ribbon H flare up to 104 km above the limb. The centroid of this source image is located about 10 (7 × 103 km) ± 5 above the neutral line. The corresponding image observed at the softer X-rays is compact and located near the centroid of the hard X-ray image.The source for the thermal component observed in the later phase at the softer X-rays is a compact single source, and it shows a gradual rising motion towards the later phase.  相似文献   

9.
Using an analytical solution of the kinetic equation, we have investigated the model properties of the coronal and chromospheric hard X-ray sources in the limb flare of July 19, 2012. We calculated the emission spectrum at the flare loop footpoints in the thick-target approximation with a reverse current and showed it to be consistent with the observed one. The spectrum of the coronal source located above the flare loop was calculated in the thin-target approximation. In this case, the slope of the hard X-ray spectrum is reproduced very accurately, but the intensity of the coronal emission is lower than the observed one by several times. Previously, we showed that this contradiction is completely removed if the additional (relative to the primary acceleration in the reconnecting current layer) electron acceleration in the coronal magnetic trap that contracts in the transverse direction and decreases in length during the impulsive flare phase is taken into account. In this paper we study in detail this effect in the context of a more realistic flare scenario, where a whole ensemble of traps existed in the hard X-ray burst time, each of which was at different stages of its evolution: formation, collapse, destruction. Our results point not only to the existence of first-order Fermi acceleration and betatron electron heating in solar flares but also to their high efficiency. Highly accurate observations of a specific flare are used as an example to show that the previously predicted theoretical features of the model find convincing confirmations.  相似文献   

10.
By comparison between SMM HXRBS observation and ground observation of H and Caii K lines for the 2B flare on February 3, 1983, we found that there was a temporal correlation between H intensity and hard X-ray flux at the early stage of the impulsive phase while different peaks in the hard X-ray flux curve represented bursts at different locations. When we combined SMM HXRBS observation with chromospheric flare models, we further found that the temporal coincidence between H intensity and hard X-ray flux could be explained quantitatively by the fact that the H flare was indeed due to the heating by non-thermal electron beams responsible for the emission of hard X-rays. Together with the discussion on coronal density based on chromospheric flare models, it was also shown that the source of electrons seemed to be situated around the top of the flare loop and the column density at the top of the chromosphere in semi-empirical flare models could not be taken as the total material above the top of the chromosphere.  相似文献   

11.
We make comprehensive analysis of morphological tracings and positional measurements of Hα images, white-light sunspot photographs and chromosphere velocity field, obtained at Yunnan Observatory, and hard X-ray images obtained by the Hinotori satellite, of the loop prominence of 1981 April 27. It seems likely that the observed loop is the projection of a post-flare loop system, and the associated flare occurred on the rear side of the solar disk. A two-ribbon flare such as in the Kopp-Pneuman model can satisfactorily explain all the observed features. The occurrence of such a flare seems likely from the evidence given by the data.  相似文献   

12.
An intense solar X-ray burst occurred on April 1, 1981. X-ray images of this gradual hard X-ray burst were observed with the hard X-ray telescope aboard the Hinotori satellite for the initial ten minutes of rise and maximum phases of the burst. The hard X-ray images (13–29 keV) look like a large loop without considerable time variation of an elongated main source during the whole observation period. The main X-ray source seems to lie along a ridge of a long coronal arcade 2 × 104 km above a neutral line, while a tangue-like sub-source may be another large coronal loop although the whole structure of the X-ray source looks like a large semi-circular loop. Both nonthermal and hot thermal (3–4 × 107 K) electrons are contributing to the source image. The ratio of these components changed in a wide range from 2.3 to 0.4 during the observation, while the image was rather steady. It suggests that both heating and accelerations of electrons are occurring simultaneously in a common source. Energetic electrons of 15–30 keV would be collisionally trapped in the coronal magnetic loops with density of the order of 1011 cm–3.  相似文献   

13.
Silva  Adriana V. R.  Gary  Dale E.  White  Stephen M.  Lin  R. P.  de Pater  Imke 《Solar physics》1997,175(1):157-173
We present here the first images of impulsive millimeter emission of a flare. The flare on 1994 August 18 was simultaneously observed at millimeter (86 GHz), microwave (1-18 GHz), and soft and hard X-ray wavelengths. Images of millimeter, soft and hard X-ray emission show the same compact ( 8) source. Both the impulsive and the gradual phases are studied in order to determine the emission mechanisms. During the impulsive phase, the radio spectrum was obtained by combining the millimeter with simultaneous microwave emission. Fitting the nonthermal radio spectra as gyrosynchrotron radiation from a homogeneous source model with constant magnetic field yields the physical properties of the flaring source, that is, total number of electrons, power-law index of the electron energy distribution, and the nonthermal source size. These results are compared to those obtained from the hard X-ray spectra. The energy distribution of the energetic electrons inferred from the hard X-ray and radio spectra is found to follow a double power-law with slope 6–8 below 50 keV and 3–4 above those energies. The temporal evolution of the electron energy spectrum and its implication for the acceleration mechanism are discussed. Comparison of millimeter and soft X-ray emissions during the gradual phase implies that the millimeter emission is free-free radiation from the same hot soft X-ray emitting plasma, and further suggests that the flare source contains multiple temperatures.  相似文献   

14.
Using the Hα observational data from Yunnan Observatory, we have made position measurements on the eruptive loop prominence of 27 April 1981, and have compared the results with the positions of X-ray sources obtained by the hard X-ray telescope (SXT) on board the HINOTORI satellite. From the results of measurement and comparison, it is suggested that 1) The two mounds A and C at 0830 UT are extensions of two ribbons in the flare near the limb, which started before 0758 UT. 2) The central positions of two X-ray sources at 0756 UT are just situated at the top of the mound A and the mound C, respectively. The Hα footpoint corresponding to the main source of X-rays was behind the solar limb. The second source of X-rays corresponds to C1 and C2. 3) The X-ray sources were probably located near the footpoints of loops.  相似文献   

15.
16.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

17.
Using the X-ray data from the SMM Satellite and the optical data from the Yunnan Observatory, we analysed the Class 3B flare of 1980 July 14. We obtained the time variation of the X-ray spectrum, calculated the total number of electrons at the time of the flare and their mean energy and measured and compared the positions of the Hα flare and the X-ray burst source. The results show 1) that the hard X-ray burst was caused by high-energy non-thermal electron beam; 2) that the soft X-ray burst was basically generated by thermal bremsstrahlung of hot plasma, but the contribution by non-thermal electrons must also be included; 3) that the determined height of the X-ray burst source depends on the flare model and the magnetic field configuration of the active region. The results obtained support the newly emergent flux model of flares.  相似文献   

18.
The determination of the location of the region of origin of hard X-rays is important in evaluating the importance of 10–100 keV electrons in solar flares and in understanding flare particle acceleration. At present only limb-occulted events are available to give some information on the height of X-ray emission. In fifteen months of OSO-7 operation, nine major soft X-ray events had no reported correlated Hα flare. We examine the hard X-ray spectra of eight of these events with good candidate X-ray flare producing active regions making limb transit at the time of the soft X-ray bursts. All eight bursts had significant X-ray emission in the 30–44 keV range, but only one had flux at the 3σ level above 44 keV. The data are consistent with most X-ray emission occurring in the lower chromosphere, but some electron trapping at high altitudes is necessary to explain the small nonthermal fluxes observed.  相似文献   

19.
We suggest to identify the elementary flare bursts with the excitation of the small kernels that occur in flare loops that are observed in soft X-ray pictures of flares. We stress the need of simultaneous observations of spatial structure and time variations of hard X-ray bursts sources in various wavelength regions.  相似文献   

20.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号