首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geochemistry of the non-carbonate fraction of sediments from the continental shelf and slope off northwest Africa has been investigated using R-mode factor analysis. The geochemistry is governed by a small number of factors controlled quantiatively by glauconite, phosphorite, quartz, clay minerals and secondary iron oxides. The distributions of the factors and of their controls are governed by mineral provenance and by depositional processes. Clay mineral factors predominate in fine grained sediments. Phosphorite, glauconite and oxide factors and quartz predominate in sands. Provenance controls the relative abundances of the minerals of the sand fraction all of which, except a proportion of the glauconite which is clearly recent, are relict and detrital. The recent glauconite is concentrated in poorly oxidised sediments off the southern Sahara. Provenance differences are detected between Saharan and Moroccan clays, and also exist between the clays of north and south Morocco.  相似文献   

2.
An integrated study of the sedimentology, micropalaeontology, mineralogy and geochemistry of glauconites in the Oligocene Maniyara Fort Formation (western Kutch, India), has been undertaken. Authigenic glauconites, mostly of evolved type, formed within a back‐barrier lagoonal environment. Foraminifera help constrain the biostratigraphy and along with sedimentological evidence, provide information on the depositional conditions. Glauconite in the Maniyara Fort Formation occurs either as infillings within intra‐particle pores of larger foraminifers, or as an altered form of faecal pellets. X‐ray diffraction studies reveal the less mature nature of glauconite infillings compared to the glauconite pellets. Electron microprobe investigation confirms a relative enrichment of K2O and total Fe2O3 in the latter. Both varieties of glauconite formed by initial authigenic precipitation of K‐poor glauconite and subsequently matured by addition of potassium in the interlayer sites and fixation of total iron in the octahedral sites; calcium, magnesium and aluminum were released from the glauconite structure concomitantly. Alkaline conditions during the entire process of glauconite formation did not allow dissolution of foraminiferal tests. Mineralogical and chemical characteristics of the Maniyara Fort Formation glauconites are more similar to deep marine glauconites than those reported from other shallow or marginal marine settings. A low negative cerium anomaly, as well as abundant pyrite, suggests formation of glauconite in sub‐oxic micro‐environments, created by decay of organic matter associated with foraminiferal chambers and faecal pellets. Sub‐oxic condition apparently prevailed relatively longer within the Maniyara Fort Formation lagoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Glauconite     
The term glauconite has been employed in two senses. It has been used most commonly as a morphological term for sand-sized greenish grains found in sedimentary rocks, but also as a name for a specific mineral species, a hydrated iron-rich micaceous clay mineral. The two uses are not synonymous, since not all morphological glauconite consists exclusively of mineral glauconite, nor is the latter restricted in its occurrence to such pellets. Mineral glauconite in sensu lato is a random interstratification of nonexpanding 10A?layers and expanding montmorillonitic layers. The amount of expandable layers may be over 50 % but it is customary to restrict the name mineral glauconite in sensu stricto to varieties with less than 10 % expandable layers. The variation in amount of expandable layers explains many of the observed variations in the properties of glauconite including chemical composition (especially potassium content), thermal characteristics, cation exchange capacity, colour, refractive index and specific gravity. Mineral glauconite is believed to form by the progressive absorption of potassium and iron by a degraded layer silicate lattice of low lattice charge and elimination of other silicate-lattice types under suitable environmental conditions, of which the most critical seems to be the redox potential. The catalytic activity of marine organisms is no longer thought to be essential, although decaying organic matter and empty foraminiferal tests supply the ideal environment for glauconite genesis. The process of glauconitization is arrested by rapid sedimentation, so that there is a relationship between the variety of mineral glauconite formed and the nature of the host rock. Glauconite is found associated particularly with marine transgressions. Morphological glauconite grains are believed to form as casts, faecal pellets or by accretionary growth, but may have their morphology modified by subsequent re-working. A number of characteristic internal and external morphologies have been recognised. The wide range of environmental conditions suitable for its formation and its common detrital occurrence debars the use of glauconite in palaeo-environmental studies. Its major use in geology is for the absolute age dating of sedimentary rocks by the K-Ar method. Glauconitic deposits have no present day commercial value, but soils formed on glauconitic parent materials are notable for their fertility. Glauconite weathers by loss of potassium to produce a montmorillonitic or vermiculitic product with the release of, or oxidation of, structural iron, so that the grain has the appearance of having weathered to limonite.  相似文献   

4.
Glauconitic minerals are considered as one of the valuable input parameters in sequence stratigraphic analysis of a basin. In the present study glauconitic minerals are reported from subtidal green shale facies in the lower part of the Late Paleocene-Early Eocene Naredi Formation of western Kutch. On the basis of the foraminiferal assemblage the glauconite bearing beds are interpreted to have formed in a mid shelf depositional settings of an unstable marine conditions. XRD studies confirm the glauconite mineralogy of the green pellets and provide an estimation of glauconite maturity. Textural attributes of the glauconites confirm their derivation by different degrees of alteration of precursor feldspar grains. Because of the authigenic origin and autochthonous nature, these glauconites hold promise for understanding sequence stratigraphy of the Palaeogene succession of the western Kutch.  相似文献   

5.
Glauconite pellets exhibit considerable variety in morphology and internal structure. Recognized morphological types are: (1) ovoidal or spheroidal; (2) tabular or discoidal; (3) mammillated; (4) ellipsoidal; (5) vermicular; (6) composite; and (7) fossil casts, internal molds, or replacements. Types of internal structures include: (1) random microcrystalline, (2) oriented microcrystalline, (3) micaceous, (4) organic (?) replacements, (5) coatings on detrital grains, and (6) fibroradiated rims. These characteristics can be used to interpret the origin and/or subsequent history of pellet types. Suggested origins include: (1) chemical precipitation, (2) expansion and alteration of detrital mica, (3) alteration of fecal pellets, (4) alteration of clay fillings of fossil tests, (5) mechanical aggregation, and (6) chemical replacement. Not all glauconite pellets exhibit diagnostic characteristics with regard to their genesis. Original morphologies may be obscured by abrasion (reworking) prior to final burial. Internal structures may be changed by recrystallization or other diagenetic processes. It is concluded that glauconite pellets have multiple origins. They can form from several different parent materials and by several different processes. Frequently, however, characteristics which might reveal the original nature of the pellets have been lost during reworking and diagenesis. Inasmuch as glauconite occurrences differ in kind and variety of pellets, recognition of pellet types and their distribution is potentially useful for stratigraphic correlation or environmental determinations.  相似文献   

6.
There are two general types of sedimentary glauconite in Recent ocean sediments: terrigenous-allogenic and authigenic glauconite. Recent sediments of the oceans contain mainly terrigenous-allogenic glauconite (shelf and continental slope) which is formed from ancient glauconite-bearing rocks on coasts, islands and the ocean floor. The age of terrigenous-allogenic glauconite ranges from 2 to 70 m.y. (8 samples from the Atlantic Ocean, 13 from the Pacific Ocean, 1 from the Indian Ocean). The area of terrigenous-allogenic glauconite distribution correlates very well with the area of distribution of glauconite-bearing rocks on land and does not correlate with the climate and bathymetry.Authigenic glauconite is seldom found in Recent ocean sediments. The sediments with authigenic glauconite form transition zones between sediments with organic carbon, H2S and sulphide near coasts and oxidized sediments of the ocean floor (red clay and others). The areas of authigenic glauconite distribution are not yet well known. The formation of authigenic glauconite occurs mainly during diagenesis of sediments by synthesis from interstitial solutions and/or alteration of clay minerals.  相似文献   

7.
关于东海现代沉积物中的海绿石,前人曾有过报道,但都限于一般性的描述。近年来我们对东海表层沉积物中的海绿石进行了较为系统的研究,工作范围为东经121°-129°,北纬26°30′-32°00′,样品233个。分别进行了镜下鉴定、透射电镜和扫描电镜观察,并以多晶X-射线衍射法,化学全分析、差热分析、红外吸收光谱和电子探针等方法进行较系统的矿物学研究。本文就东海表层沉积物中海绿石的矿物学特征,产状及分布进行阐述,并对其成因作了初步的探讨。  相似文献   

8.
Upper Eocene detrital silica grains (chert and quartz) of the Hampshire Basin display alteration and replacement fabrics by glauconite. Silica grains have etched surfaces due to glauconitization which appear green in reflected light and thin section. Quartz grains were glauconitized by surface nucleation and replacement, which spreads from the margin with progressive glauconitization, replacing the quartz grain interior. Chert grains were glauconitized by surface replacement and nucleation internally along cracks and in pores. Different forms of glauconite are associated with the two minerals; glauconite associated with quartz is generally highly-evolved whereas glauconite associated with chert is of the evolved variety. This is interpreted as being due to different surface-reaction control mechanisms associated with the two forms of silica. There is no evidence to suggest that glauconite evolved in stages from a nascent form. Two crystalline morphological forms of glauconite are found associated with both quartz and chert. Glauconite growing within a confined space has a laminated morphology whilst glauconite occurring on the surface has a rosette morphology.  相似文献   

9.
A set of samples from the Camarillas Formation (Barremian, Weald facies) in the Galve Sub-basin (Central Iberian Chain, north-east Spain) was studied to determine the origin of the abundant kaolinitic clays and their relationship to the sedimentary environment, palaeoclimate and diagenetic processes. The samples were examined by X-ray diffraction and scanning and transmission electron microscopy, with special emphasis on clay-mineral characterization. The analysed materials are a mixture of detrital (quartz, micas, and K-feldspars) and authigenic phases (kaolinite, Fe-oxides, gibbsite, dickite, and calcite). Therefore, the mineralogy of the rocks reflects the source area, the sedimentary conditions, and the diagenetic evolution. The most abundant authigenic phases are kaolinites. The combination of XRD and electron microscopy shows that the kaolinites are well crystallized and have as high a degree of ordering as those formed by weathering in palaeosols; this clay formed the rock matrix, intergrowths with muscovite, and vermicular booklets that replaced detrital silicates as a consequence of intense dissolution processes. The diagenetic processes have recrystallized kaolinites in the sandstones, producing larger crystallinity indices and dickite. In contrast, kaolinites from the claystones and siltstones probably reflect formation by weathering. The kaolinitization process described, associated with the crystallization of gibbsite and iron oxides, is in agreement with the relatively warm and humid conditions described for the Iberian Range basin in the early Barremian.  相似文献   

10.
This study presents geochemical characteristics of glauconites in estuarine deposits within the Maastrichtian Lameta Formation in central India. Resting conformably over the Bagh Group, the Lameta Formation consists of ~4-5 m thick arenaceous, argillaceous and calcareous green sandstones underlying the Deccan Traps. The sandstone is friable, medium-to coarse-grained, well-sorted and thoroughly crossstratified, and contains marine fossils. Detailed petrography, spectroscopy and mineral chemistry indicates unique chemical composition of glauconite with high K_2O, MgO, Al_2O_3 and moderate TFe_2O_3. Glauconite is formed by the replacement of K-feldspars, initially as stringers in the cleavages and fractures of feldspars. Incipient glauconite subsequently evolves fully, appearing as pellets. Fully-evolved glauconite pellets often leave tiny relics of K-feldspar. XRD exhibits characteristic peak of 10A from basal(001)reflection of glauconite, indicating the "evolved" character. The K_2O content of glauconites in the Lameta Formation varies from 5.51% to 8.29%, corroborating the "evolved" to "highly-evolved" maturation stage.The TFe_2O_3 content of glauconite varies from 12.56% to 18.90%. The PASS-normalized-REE patterns of glauconite exhibit a "hat-shape" confirming the authigenic origin of glauconites. The slightly-negative to slightly-positive Ce anomaly value and the moderate TFe_2O_3 content of glauconite agree well with a suboxic,estuarine condition. The replacement of K-feldspar by the glauconite contributes towards the high K_2O content. Compositional evolution of glauconites in the Lameta Formation is similar to those observed in many Precambrian sedimentary sequences.  相似文献   

11.
乌拉嘎、平顶山、老柞山金矿是佳木斯地块三个重要的金矿。研究表明,石英是金矿中重要的脉石矿物,也是金的主要载体。SiO2含量低于98%,而∑(Al2O3+K2O+Na2O)含量高于1.3%的石英为含金石英;含金或富含金石英的热释发光谱以双峰或多峰为其主要特征。因此,上述石英的标型特征可作为金矿床重要的找矿标志,对佳木斯地块的矿点评价和扩大找矿远景有着重要的意义  相似文献   

12.
在内蒙古西乌珠穆沁旗晚石炭世—早二叠世阿木山组第三段泥晶灰岩中发现有海绿石。对海绿石的微观特征分析表明,阿木山组海绿石呈团粒状结构,同时呈胶体产出于方解石周边,显示了原生海绿石的基本特点。电子探针的组分分析表明,阿木山组中的海绿石为高成熟度的海绿石。通过对不同地区和不同环境下海绿石的组分特征分析,建立了一种海绿石沉积的理想模式,同时揭示了阿木山组第三段海绿石化作用是在含氧量不够充分的弱还原状态下的正常浅海中进行的。本区阿木山组的下碎屑岩段和上灰岩段是在海水两进两退环境下的沉积,阿木山组灰岩中发现的海绿石则有可能代表了一个海进的开始。本区海绿石的发现及研究,对于进一步研究该区层序地层特征、地层格架及区域地层对比具有重要意义。  相似文献   

13.
Glauconite is widely distributed in space and time.In China glauconite-bearing strata are extensive occurrence ranging from Late Cretaceous to Middle Proterozoic in age.X-ray powder analysis,X-ray diffracition analysis and differential thermal analysis revealed that glauconite has a mica-type structure between dioctahedron and trioctahedron.Its chemical composition is:Al2O310.6%,SiO249.23%,MgO3.24%,Fe2O317.40%,FeO1.8%,and K2O7.92%,Its crystal form and thermal properties are very similar to those of mica-like clay minerls.According to isotopic age determinations of glauconite in modern oceans (including the East China Sea,the South China Sea and the Yellow Sea),we consider that in the extreme case glauconite is an authigenic mineral.It is generally formed in sedimentary rocks.Is has further proved that glauconite can be used to determine the ages of sedimentary rocks.  相似文献   

14.
对“指相矿物”海绿石的重新认识   总被引:3,自引:0,他引:3  
长期以来,海绿石一直被认为是在特定海洋条件下形成的自生矿物,被作为海相标志,随着陆相海绿石的不断发现,有必要对这一观点进行重新认识。本文通过对不同地区、不同环境中的海绿石的统计研究认为:海绿石既可以形成于海洋环境,也可以形成于陆相湖泊环境,海绿石不能作为海洋环境的指相矿物;一般来说,形成于陆相湖泊环境的海绿石与形成于海洋环境的海绿石相比,在化学成分上具有Al2O3、K2O含量高而FeO含量低的特点  相似文献   

15.
The field-name “glauconite” is applicable to a great variety of green grains, particularly mud clasts, which are found in the fraction >63μ in surface sediments from the Persian Gulf. These grains occur in areas of low sedimentation rates in all water depths to 110 m, the shelf break in the Gulf of Oman (Fig. 1). Glauconite grains coarser than 250,μ were magnetically separated from 15 samples and then handpicked. Their carbonate fractions (75->90%, predominantly aragonite) are basically different from those of the corresponding total samples (50–65%, predominantly calcite). The clay minerals in the glauconite grains fall into two groups. The samples away from the shore contain abundant montmorillonite, compared to the small amount in the 2μ (fractions of the total samples; the near shore samples are predominantly amorphous material and illite. Because of these and other differences from the remaining parts of the samples (Tab. 1) the glauconite grains are considered to be parautochthonous relicts from the underlying late Pleistocene. They were apparently formed under the special conditions of a transgressing shallow marine environment.  相似文献   

16.
In Normandy (France), the glauconite bearing base of the Cenomanian has a wide distribution in outcrops and boreholes. Glauconite pellets are subjected to natural weathering and fluvial transport following separation from the glauconite-bearing bedrock by streams and creeks which dissolve the carbonate fraction. From the 100 samples collected, 19 samples from the studied horizon have been selected after X ray, diffaction studies. X ray diffractron techniques show that the non weathered glauconite pellets are composed of well-ordered gilauconites. In the reworked glauconite, the alteration is manifested by a slight opening of the structure. In addition, the diffractogramm yield a fast and sensitive estimation of the K contents of the glauconites. Lowering of the K content goes hand in hand with the opening of the glauconite structure. 12 samples were selected from the autochtonous horizon (fresh outcrop and borehole) a second group of 7 samples was taken from alluvions (streams and quaternary terraces) to study the effects of natural weathering. As actually, no other glauconite-bearing horizons are found in the region, the glauconite pellets in the alluvions can only be derived from the studied bedrock. Reworking and natural weathering of the glauconites leads to a decrease of the K content of 10–15%. Argon analysis shows that comparable percentage of radiogenic argon is lost at the same time so that the apparent ages do not change (in the errors limits). These results are only valid for well-ordered glauconites and continental alteration under moderate climate with basic fresh water. In conclusion, it can be stressed that the credibility of glauconite K-Ar ages does not change after such a reworking.  相似文献   

17.
Glauconite segregations in Oligocene–Miocene shelf sediments of Western Kamchatka (Kakert and Gakkha horizons) are studied. Glauconite occurs in the studied samples as morphologically different grains, finely dispersed cement, and pseudomorphoses after organogenic structures (siliceous sponge spicules, diatom algae frustules, and others). In addition, samples of the clasts of bryozoans, volcanic glass, and terrigenous grains revealed for the first time traces of the boring algae similar to recent species of genus Hyella and, possibly, Dalmatella, whose tubules are sometimes filled with the finely dispersed glauconite. Our data based on the detailed petrographic studies and SEM investigations confirm and supplement the opinion of several researchers about an important role of microbiota on the glauconite formation. The paper discusses different stages of the glauconite formation in sediments of the Kakert and Gakkha horizons and the possible setting of glauconite infilling in the algal borer trails and holes.  相似文献   

18.
海绿石 K-Ar、40Ar/39Ar 年代学研究   总被引:1,自引:0,他引:1  
李明荣  王松山  裘冀 《地球学报》1994,15(Z1):218-225
海绿石是与沉积岩同时形成的高钾层状硅酸盐自生矿物,其 K-Ar、40Ar/39Ar 年龄存在失真现象。笔者认为,引起年龄失真的主要原因是由于该矿物结构中含有可膨胀层。通过测量可膨胀层含量及中子活化过程中39Ar的丢失率,使可对海绿石常规 K-Ar、40Ar/39Ar 年龄进行校正,得到其年龄校正公式。  相似文献   

19.
The K-Ar system in clay fractions from shallow marine carbonate shelf environments was investigated on silicate fractions (clay minerals, feldspar) separated from 20 Lower Jurassic to Upper Cretaceous sedimentary rocks, deposited in the southern Tethys ocean. The range of lithologies investigated included dolomite and chalk [IR (insoluble residue)<10%], marl, shale (IR= 70–85%) and sandstone (IR>90%). The results show that K-bearing clay fractions often have K-Ar ages similar to the suggested age of deposition, which means either supply of land-derived authigenic K-bearing clays or synsedimentary diagenetic authigenesis, or both. This K-Ar synsedimentary signal is recorded in clay fractions from the whole range of studied lithologies and stratigraphic units. Among the clay minerals, the synsedimentary K-Ar signature was recorded and retained in illite/smectite of the <2-um and <0.2-um fractions. A prominent synsedimentary signature is found in K-feldspars, from shaly and especially from calcareous rocks, which is substantiated by their authigenic origin based on idiomorphic crystal morphology and their limited size distribution (4–10 um). Post-depositional closure of the K-Ar system is indicated by ages up to 15 Ma younger than the stratigraphic age in different lithologies from dispersed localities. A distinct late diagenetic (20–25 Ma younger) event is recorded in the formation of authigenic K-feldspar within Upper Cretaceous chalk and shale. In the IR and >10-um fractions the K-Ar ages reflect the contribution of detrital mica and feldspar which accompanies the kaolinite-dominated samples. The overall results differ considerably from K-Ar age patterns observed in deep-sea sediments, a difference which may be connected with the occurrence of brines in these shelf deposits. The findings indicate the potential in the K-Ar dating of fine IR fractions of marine shelf sediments in terms of geochronological-stratigraphic and palaeogeographical aspects as well as in the petrology of clay minerals themselves.  相似文献   

20.
Sequential leaching experiments were made on Recent glauconies and clay fractions of the associated mud from off-shore Africa near the estuary of the Congo River. Analyses of major/rare earth elements (REE) and Nd isotopic compositions on the resulting leachate and residue pairs allow identification of at least three important and isotopically distinct components which contributed to the glauconitization process: (1) a detrital component with relatively high 87Sr/86Sr and relatively low 143Nd/144Nd isotopic ratios; (2) a phosphate phase rich in REE and Sr with sea water Sr and Nd isotopic characteristics; (3) a component rich in organic matter and Ca with a sea water Sr isotopic signature, a relatively low Nd isotopic composition and elevated Sm/Nd ratios. This latter component probably represents the suspended organic and carbonate-rich river load. The detrital and the river components were mixed up in the muddy off-shore sediment, ingested by worms, and integrated into faecal pellets. The resulting material has Sr and Nd isotopic signatures intermediate between those of the detrital and river components, and represents the precursor of the glaucony minerals. During the subsequent dissolution-crystallization process, the glauconitic pellets remain isotopically closed to any external supply, but expulsion of Sr and Nd with increasing degree of maturation is observed without any effect on the Sr and Nd isotopic compositions. At a higher maturation stage (K2O>4.5%), the Sr and Nd isotopic compositions tend to decrease and increase, respectively, approximating the isotopic composition values of the phosphate-rich phase. Because the Sr and Nd concentrations decrease, the evolution of the glauconies toward lower Sr and higher Nd isotopic compositions can only be explained by expulsion of Sr and Nd of the detrital component with high Sr and low Nd isotopic signatures. Dissolution of the chemically unstable, wormdigested clay material from mud may be responsible for the liberation of these elements. Consequently, the phosphate-rich phase with sea water Sr and Nd isotopic signatures becomes increasingly important for the isotopic characteristics of the maturing glauconite grains, and sea water isotopic signatures can be reached during the stage of mature glauconite (K2O>6.5%), without chemical exchange with the depositional environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号