首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
土地利用和气候变化对海河流域蒸散发时空变化的影响   总被引:1,自引:0,他引:1  
蒸散发(ET)是水文能量循环和气候系统的关键环节,研究ET的时空变化特征及其响应土地利用和气候变化的驱动机制对于理清流域水资源和气候变化的关系具有重要的意义。本文基于MOD16/ET数据集定量分析了海河流域2000-2014年ET的时空变化特征,并结合时序气温降水数据和土地利用数据,采用相关分析方法定量探索了ET与气候因子的驱动力关系。结果表明:① 海河流域2000-2014年ET表现为较为显著的空间分布格局,呈现出北部和南部高、西北部和中东部低的分布特性。不同土地利用类型的多年ET呈林地>草地>耕地>其他类型的特征;② 2000-2014年海河流域年均ET波动范围为371.96~441.29 mm/a,多年ET的均值为398.69 mm/a,平均相对变化率为-0.41%,整体呈下降趋势;③ 多年月ET与气温和降水均呈单峰型周期性变化趋势,年内月ET呈单峰变化趋势;④ 春秋两季的ET与降水和气温的相关性明显高于其他季节,ET与气温和降水的平均相关系数是-0.17和0.37,表明降水对于ET的响应程度强于气温;⑤ 驱动分区结果表明海河流域ET受气候因子驱动的主要类型是降水驱动型和降水、气温共同驱动型;⑥ 海河流域耕地ET变化气候因子驱动模式主要是降水、气温共同驱动型;林地、草地的驱动模式主要气温驱动型和降水驱动型,其他土地利用类型的驱动模式主要是受其他因素驱动。该研究将对海河流域水资源开发管理和区域气候调节起到科学指导作用。  相似文献   

2.
以山东省作为研究区域,利用分辨率为100m的2005年、2008年、2010年和2013年土地利用遥感解译数据和统计年鉴资料,结合ArcGIS空间分析和数理统计等方法,分析山东省土地利用时空变化,通过多元回归模型揭示土地利用变化与经济社会驱动因素之间的变量关系。研究表明,山东省耕地面积从1036.55×104hm2到1024.34×104hm2不断减少,建设用地面积从214.05×104hm2到275.75×104hm2不断增加并且大量占用耕地、林地、草地。耕地向山东省的东部丘陵地区和西部、北部地势低洼平坦地区转移,建设用地向东南部和西北低洼平坦地区转移较多。2008—2010年综合土地利用动态度最为强烈,分别是2005—2008年和2010—2013年的9倍和12倍。人口增长、经济发展、产业结构改变等因素与土地利用变化的相关性较强,这些因素在土地利用类型变化中发挥着重要的作用。  相似文献   

3.
Land use regionalization of rural settlements in China   总被引:2,自引:1,他引:1  
This paper compartmentalizes regional land use of rural settlements in China by employing a hierarchical clustering method.The statistic data are sourced from the National Bureau of Statistics of China(NBSC) and the data of land use change from the Ministry of Land and Resources of China(MLRC).The population of rural settlement decreases from the southeast to the northwest of China and the density of rural settlement decreases from the east to the west of China.Land-use scale of rural settlement,the proportion of one-storey houses and the average household area decrease from the north to the south of China.The ratio of area of cultivated land to rural settlement is high in the northeast and southwest of China but low in the southeast of China.The land use regionalization of rural settlement can be divided into four regions,namely:the northern region of China,Qinghai-Tibet,Yunnan-Guizhou,and the middle and eastern region of China.The northern region of China and the middle and eastern region of China can be further divided into nine sub-regions:Xinjiang,Northeast China,Ningxia and Inner Mongolia,North China,the south of the Changjiang(Yantze) River and Sichuan Basin,Jiangsu-Shanghai,South China,the Loess Plateau,and Guangxi.In consideration of the significant regional differences,it is proposed that different policies should be implemented regarding the utilization and management of rural settlements.  相似文献   

4.
黄河流域作为中国东部平原的生态屏障,研讨其植被覆盖的时空变化有助于生态环境治理。本文利用GEE平台,基于Landsat数据通过像元二分模型反演了1990—2020年黄河流域植被覆盖度(FVC),并通过Theil-Sen Median趋势分析和 Mann-Kendall检验方法剖析FVC的时空变化趋势,挖掘出FVC趋势变化与海拔、坡度、坡向等地形因子之间的响应关系。结果表明:① 黄河流域FVC整体呈现西北低东南高的空间分布趋势,其中低等FVC占整个流域面积的45%,主要集中于西北部干旱半干旱地区;② 流域中部植被覆盖改善明显,占整个流域的57.07%,西北部和东南部退化程度相对较高;③ 植被覆盖受地形效应影响较为显著,在坡度大于40°及高程(-31~637 m)时高等级FVC占比较高,坡度8~18°及高程1852~2414 m范围内植被改善效果相对较好。结果可以为黄河流域生态环境保护及高质量发展提供科学支撑。  相似文献   

5.
1980-2015年黄河流域降雨侵蚀力时空变化分析   总被引:2,自引:0,他引:2  
本文利用1980-2015年黄河流域及周边166个气象站点36 a的降雨资料,采用日降雨侵蚀力计算模型,对克里金插值后的栅格数据,通过利用主成分分析法、isodata聚类和最大似然法实现区域划分,并在此基础上应用重心模型研究了黄河流域降雨侵蚀力的时空变化。研究结果表明:黄河流域内不同区域的年降雨侵蚀力差异较大,最小的区域在200 MJ·mm·hm-2·h-1左右变化,最大的区域可达3000 MJ·mm·hm-2·h-1,年降雨侵蚀力具有由西北向东南递增的趋势。年降雨侵蚀力大的区域其侵蚀力值在不同年份中波动范围也大。西宁、呼和浩特等所在的一区、二区和三区的年降雨侵蚀力的重心总体上呈现向东北方迁移趋势。太原、西安所在的四区、五区其重心总体上呈现向西南方迁移趋势,其年降雨侵蚀力重心迁移范围小,重心点分布更紧密。各区域年降雨侵蚀力重心的迁移范围在空间和时间尺度上总体呈现由西北向东南方向逐渐缩小趋势。  相似文献   

6.
以京津唐地区为例,基于SEBS模型,利用MODIS遥感数据和气象数据,计算了2000、2005和2010年四季代表月份的平均日蒸散发量,并结合3期土地利用图,定量评估了由城市扩张引起的日蒸散发量的变化。结果表明,不同土地利用类型的日蒸散发量在不同季节表现出不同的分布规律,春、夏和秋季的日蒸散发量分布规律为水域>林地>草地>耕地>城市用地,冬季的日蒸散发量在三年的分布不一致:2000年为林地>草地>水域>城市用地>耕地,2005年为水域>林地>草地>耕地>城市用地,2010年为林地>水域>草地>城市用地>耕地。以研究区土地利用变化不明显的区域为背景区域,评估了除土地利用/覆被变化外的其他因素对京津唐地区夏季日蒸散发的影响。除去该影响后得出土地利用/覆被变化,对日蒸散发的影响,结果表明,各土地利用类型转化为城市用地会使日蒸散发降低,且水域转化成城市用地后,其日蒸散发量降低最多,2000-2005年降低了0.977mm,2000-2010年其降低值为0.983mm。  相似文献   

7.
In this study,the Surface Energy Balance Algorithms for Land(SEBAL) model and Moderate Resolution Imaging Spectroradiometer(MODIS) products from Terra satellite were combined with meteorological data to estimate evapotranspiration(ET) over the Sanjiang Plain,Northeast China.Land cover/land use was classified by using a recursive partitioning and regression tree with MODIS Normalized Difference Vegetation Index(NDVI) time series data,which were reconstructed based on the Savitzky-Golay filtering approach.The MODIS product Quality Assessment Science Data Sets(QA-SDS) was analyzed and all scenes with valid data covering more than 75% of the Sanjiang Plain were selected for the SEBAL modeling.This provided 12 overpasses during 184-day growing season from May 1st to October 31st,2006.Daily ET estimated by the SEBAL model was misestimaed at the range of-11.29% to 27.57% compared with that measured by Eddy Covariance system(10.52% on average).The validation results show that seasonal ET from the SEBAL model is comparable to that from ground observation within 8.86% of deviation.Our results reveal that the time series daily ET of different land cover/use increases from vegetation on-going until June or July and then decreases as vegetation senesced.Seasonal ET is lower in dry farmland(average(Ave):491 mm) and paddy field(Ave:522 mm) and increases in wetlands to more than 586 mm.As expected,higher seasonal ET values are observed for the Xingkai Lake in the southeastern part of the Sanjiang Plain(Ave:823 mm),broadleaf forest(Ave:666 mm) and mixed wood(Ave:622 mm) in the southern/western Sanjiang Plain.The ET estimation with SEBAL using MODIS products can provide decision support for operational water management issues.  相似文献   

8.
Evapotranspiration(ET) is a crucial part of the global hydrological cycle, and quantifying ET components is significant for understanding the global water cycle and energy balance. However, there is no consensus on the value of ET components, especially in topographic abrupt change zone, such as eastern margin of the Qinghai-Tibet Platea, where values of ET changes along the altitudinal gradients. Our aim is to explore the influencing factors in partitioning evapotranspiration and how ET components change with increasing elevations. A novel approach was proposed to estimate ET components by adding net solar radiation(Rn) instead of the vapor pressure deficit(VPD) into the underlying water use efficiency(u WUE) model based on one-year continuous measurements of flux data along the elevation gradient on Mount Gongga. Correlation analysis shows that the u WUE model's performance can be improved significantly by considering Rn instead of VPD, with correlation coefficients increasing by 35%-64%. The ratios of transpiration(T) to ET(T/ET) were 0.47, 0.48, 0.50 and 0.35 for the deciduous broadleaf forest(BF), mixed coniferous and deciduous broadleaf forest(MF), evergreen needle forest(ENF) and shrub land(SL), respectively. Leaf area index(LAI) and air temperature(Ta) were the two main controlling factors in determining T/ET during the growing season and at an annual scale, while Rn and Ta played more important roles during the dormant season. This study highlights the importance of incorporating Rn in partitioning evapotranspiration by using the water use efficiency(WUE) method in a humid mountainous region, which can improve the estimation of T/ET on a global scale.  相似文献   

9.
近55年来澜沧江流域降水时空变化特征分析   总被引:1,自引:0,他引:1  
本文利用澜沧江流域及周边共30个气象站点1960-2014年的逐月降水数据,采用气候倾向率、Mann-Kendall趋势检验、Morlet小波分析、Co-Kriging插值以及重心模型等方法,分析了澜沧江流域降水的时空变化特征。结果表明:① 分析时段内全区、北部和中部年降水量呈现增加趋势,南部年降水量出现减少趋势。春季全区、北部、中部和南部降水均呈增加趋势;夏季均呈减少趋势;秋季全区和南部降水呈现减少趋势,北部和中部呈增加趋势;冬季全区、中部和南部呈下降趋势,只有北部呈增加趋势。② 近55年来,全区包括北部、中部和南部年降水都存在近29年、近22年和5-10年左右的周期,这3个周期在分析时段内表现很稳定,具有全域性。全区、北部和南部还存在明显的13年左右的周期,中部1975年前和1995年后也存在13年左右的周期,北部1975年前存在明显的7-10年的周期,1995年后,7-10年的周期表现也比较稳定。降水量变化的第一主周期是近29年,第二主周期是近22年。③ 澜沧江流域多年平均降水量由南部向北部减少,流域南部降水最多,多年平均降水量在1200 mm以上,中部多年平均降水量处于800~1100 mm,北部多年平均降水量多小于800 mm,大部分在400~800 mm;澜沧江流域年降水重心和月降水重心都集中在中部,其中11月的降水重心迁移距离最大,向东南方向迁移了131.82 km。从季节来看,春季、夏季和秋季降水重心向东南迁移,冬季的向西北方向迁移,雨季降水重心相对比较集中,旱季降水重心相对 比较分散。  相似文献   

10.
The structure and function of network is a central issue in landscape ecology.Road networks with hierarchical structure are crucial for understanding landscape dynamics.In this study,we compared the distribution of national road,provincial road,county road and rural road in the Three Parallel Rivers Region(TPRR)in Yunnan Province of China,and estimated the effect of roads(and other factors)on the spatial patterns of land use and land cover with logistic regression.In addition,we analyzed the land use and land cover change(LUCC)and landscape fragmentation in 1989–2005 along a buffer zone of the primary traffic corridor,national road G214.The results showed that,county and rural roads had much higher percentage of length extending into more natural habitats at higher elevation and steeper slope,compared with the higher level roads in this region.While the distributions of natural land cover types were dominated by environmental factors,human land use types i.e.,building land and farmland types were significantly related with roads,linking more closely with lower level roads.The LUCC dynamics(1989–2005)of the G214 buffer zone showed a general trend of land transformation from conifer forests and valley arid shrubs to building land and farmland,and from ice and snow to alpine shrubs and forests.With the length of G214 unchanged during the time,the overall landscape pattern changed little in the buffer zone,but habitat fragmentation and area decrease had occurred for the natural vegetation types,in contrast to patch mergence and expansion of human land use types,and landscape fragmentation was intensified above 2500 m a.s.l.but declined below the elevation.The results indicated the dynamics of landscape composition and patch type level distribution in spite of the stability of the overall landscape pattern,and implied the potential role of roads,especially the low level roads on landscape changes.  相似文献   

11.
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.  相似文献   

12.
Rainfall erosivity in Tibet from 2000 to 2OlO was estimated based on simplified erosion prediction model using daily rainfall data derived from the Tropical Rainfall Measurement Misssion (TRMM) 3B42 rainfall measurement algorithm. Semi- monthly erosive rainfall and rainfall erosivity were validated using weather station data. The spatial distribution of annual rainfall erosivity as well as its seasonal and annual variation in Tibet was also examined. Results showed that TRMM 3B42 data could serve as an alternative data source to estimate rainfall erosivity in the area where only data from sparsely distributed weather stations are available. The spatial distribution of rainfall erosivity in Tibet generally resembles the distribution of multi-year average of annual rainfall. Annual rainfall erosivity in Tibet decreased from the southeast to the northwest. The concentration degree of rainfall erosivity shows an increasing trend from the southeast to the northwest. High rainfall erosivity accompanies low rainfall erosivity concentration degree and vice versa. Rainfall erosivity increased in the middle and western Tibet and decreased in the southeastern Tibet during the 11 years of this study.  相似文献   

13.
Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.  相似文献   

14.
黄河三角洲油田集中区土地利用演化的遥感分析   总被引:6,自引:0,他引:6  
本文利用多时相的 TM卫星影像及相关资料 ,圈定油田集中区 ,并提取其土地利用要素 ;就 1984~ 1999年15年来 ,黄河三角洲油田集中区内土地利用变化进行分析。结果表明 ,油田集中区是处于生态极其脆弱的地带 ,土地利用类型变化比较快 ,变化的面积所占的比例相对较大。  相似文献   

15.
Land change science (LCS) strives to understand and model land-use change, which will further advance the understanding of multiple issues in the socio-ecological systems. Based on GIS/RS techniques, autologistic model, and household survey method, this study investigated major land use changes and their causes from 1978 to 2008 in Uxin Banner (county-level), Inner Mongolia in China and then developed an understanding of the relationships between household livelihood and land-use pattern. Results showed that cultivated land increased from 1988 to 2000, and leveled offafter 2000. Built-up land increased stably for the period 1978 2008. The change of grassland and bare land differed among the three periods. From 1978 to 1988, grassland increased by 23.3%, and bare land decreased by 20.48%. From 1988 to 2000, bare land expanded by 1.7%, but grassland declined by 1.3%. From 2000 to 2008, an increase in grassland area by 1.8% was observed, but a decrease in bare land area by 9.0% was witnessed. The autologistic models performed better than logistic models as indicated by lower Akaike Information Criterion (AIC) values. Factors associated with human activities significantly correlated with the change of cultivated land, forest land, grassland, and built-up land. The produce prices and extensive cultivated land use are major issues in the farming area. This study suggests that completing land circulation systems and maintaining the stability of price are effective solutions. By contrast, reclamation and overgrazing are major concerns in the pastoral areas. Implementing environmental policies effectively, transferring population out of rural pastoral areas, and developing modem animal husbandry are effective ways to address these issues.  相似文献   

16.
Accurate estimate of soil carbon storage is essential to reveal the role of soil in global carbon cycle. However, there is large uncertainty on the estimation of soil organic carbon (SOC) storage in grassland among previous studies, and the study on soil inorganic carbon (SIC) is still lack. We surveyed 153 sites during plant peak growing season and estimated SOC and SIC for temperate desert, temperate steppe, alpine steppe, steppe meadow, alpine meadow and swamp, which covered main grassland in the Qinghai Plateau during 2011 to 2012. The results showed that the vertical and spatial distributions of SOC and SIC varied by grassland types. The SOC amount mainly decreased from southeast to northwest, whereas the SIC amount increased from southeast to northwest. The magnitude of SOC amount in the top 50 cm across grassland types ranked by: swamp > alpine meadow > steppe meadow > temperate steppe > alpine steppe > temperate desert, while the SIC amount showed an opposite order. There was a great deal of variation in proportion of SOC and SIC among different grassland types (from 55.17 to 94.59 for SOC and 5.14 to 44.83 for SIC). The total SOC and SIC storage was 5.78 Pg and 1.37 Pg, respectively, in the top 50 cm of soil in Qinghai Province. The mixed linear model revealed that grassland types was the predominant factor in spatial variations of SOC amount while grassland types and soil pH accounted for those of SIC amount. Our results suggested that the community shift of alpine meadow towards alpine grassland induced by climate warming would decrease carbon sequestration capacity by 6.0 kg C m2.  相似文献   

17.
Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.  相似文献   

18.
近30年来长江源区土地覆被变化特征分析   总被引:2,自引:0,他引:2  
长江源区是我国重要的水源涵养地。本文利用20世纪70年代中后期、90年代初期、2004年和2008年共4期土地覆被数据,通过土地覆被转类途径与幅度、土地覆被状况指数和土地覆被转类指数,分析评价了长江源区近30年来土地覆被与生态状况的时空变化特征。结果表明:草地是长江源区主要的土地覆被类型,2008年草地面积占该区总面积的66.93%。在70年代中后期-90年代初期、90年代初期-2004年和2004-2008年的3个时段内,土地覆被状况指数变化率分别为-0.15、-0.24和0.01;土地覆被转类指数分别为-0.20、-0.66和0.08。近30年来,长江源区土地覆被和生态状况总体经历了变差-显著变差-略有好转的过程。2004-2008年,长江源区年平均温度比前期(70年代中后期-2004年)升高了0.57℃,年平均降水量比前期增加了17.63mm。区域气候变化有助于自然生态系统的恢复。后期生态保护与建设工程的实施,对植被恢复产生了一定的积极作用。  相似文献   

19.
南京市九乡河流域土地利用程度空间异质性分析   总被引:9,自引:0,他引:9  
定量分析九乡河流域土地利用程度及其空间异质性,对确定该流域土地资源利用和保护方向、实现土地资源可持续利用具有重要意义.以2003和2009年2期遥感影像为基本信息,利用空间自相关以及半变异函数分析方法,探讨了2003- 2009年九乡河流域土地利用程度的空间异质性特征,结果表明:流域土地利用程度的空间自相关表现出较强的...  相似文献   

20.
The famous 'Hu Line', proposed by Hu Huanyong in 1935, divided China into two regions(southeast and northwest) of comparable area size but drastically different in population. However, the classic Hu Line was derived manually in absence of reliable census data and computational technologies of modern days. It has been subject to criticism of lack of scientific rigor and accuracy. This research uses a GIS-automated regionalization method, termed REDCAP(Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning), to reconstruct the demarcation line based on the 2010 county-level census data in China. The results show that the logarithmic transformation of population density is a better measure of attributive homogeneity in derived regions than density itself, and produces two regions of nearly identical area size and greater contrast in population. Specifically, the revised Hu Line by Hu Huanyong in 1990 had the southeast region with 94.4% of total population and 42.9% of total land, and our delineation line yields a southeast region with 97.4% population and 50.8% land. Therefore, the population density ratio of the two regions is 27.1 by our line, much higher than the ratio of 22.4 by the Hu Line, and thus outperforms the Hu Line in deriving regions of maximum density contrast with comparable area size. Furthermore, more regions are delineated to further advance our understanding of population distribution disparity in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号