首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
DISTRIBUTIVETENDENCYOFELEMENTCONCENTRATIONSINLIMESTONESOILSINEASTERNCHINAWenYanmao(温琰茂);ZengShuiquan(曾水泉);PanShurong(潘树荣);Luo...  相似文献   

2.
The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory incubations of sorption/desorption of DOC had been carried out at -15℃ for 10 h, and then at +5℃ for 13 h. Soil samples were refrozen and thawed subsequently for 5 cycles. Initial Mass model was used to describe sorption behavior of DOC. The results indicate that freeze-thaw cycles can significantly increase the sorption capacity of DOC and reduce the desorption capacity of DOC in the three soils. The freeze-thaw effects on desorption of DOC in soils increase with the increasing freeze-thaw cycles. The conversion of natural wetlands to soybean farmland can decrease the sorption capacity and increase the desorption capacity of DOC in soils. Global warming and reclamation may increase DOC release, and subsequently increase the loss of carbon and the emission of greenhouse gas.  相似文献   

3.
1IN TR O D U C TIO NA s a persistentand toxic pollutant, cadm ium (C d) canresultin m any adverse health effects in a variety oftis-suesand organssuch asthe lung,kidney,urinary,blad-der,pancreas,breast and prostate (SA TA R U G etal.,2003).C adm ium in so…  相似文献   

4.
According to the historical changes of coastal lines, seven soil sampling districts, from land to sea, were arranged in Dongtai City, Jiangsu Province to sample soils from surface and profile. Concentrations of seven major heavy metals (HMs), granularity, pH, organic matters and C/N of the soil samples were analyzed. Results show that concentrations of heavy metals in agricultural land present a certain spatial variance, decreasing from land to sea. Pollution assessment indicates that the agricultural soils were not polluted by HMs, but the potential pollution of Cu and Hg needs to be alerted. Different HMs accumulate in the surface and sub-surface of the soil profiles, and concentrations of Hg and Pb decrease significantly with the increment of soil depth. Concentrations of HMs exhibit a significantly negative correlation to pH, but have no significant relation with organic matters in soil. Principle component analysis show that the concentrations of HMs relate to the land use history. Concentrations of Hg, Ni and Cr in soil are closely related with land use history, and concentrations of Pb, Cu and Cr are affected by land use history as well as other factors. However, there is no significant relation between concentration of As and land use history.  相似文献   

5.
Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon (SOC) fractions in forest ecosystems. This study had two aims: (1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and (2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains (SW Poland, Central Europe). The content of the most labile fraction of carbon (dissolved organic carbon, DOC) decreases with altitude, but the content of fulvic acids (FA), clearly increases in the zone above 1000 m asl, while the stabile fraction (humins, non-hydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests (Norway spruce), while a smaller - under deciduous forests (European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above 1000 m asl may lead to a substantial increase in the stable humus fraction (mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization. In the lower zone (below 1000 m asl), a decrease in the most stable humus forms can be expected, accompanied by an increase of DOC contribution, which will result in a reduction in SOC pools. Overall, the expected prevailing (spatial) effect is a decreasing contribution of the most stable humus fractions, which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe.  相似文献   

6.
In order to research engineering geological properties of the soil in Zhenlai of western Jilin, especially the dispersivity of soil, the authors carried out the basic physicochemical test and dispersivity identification test. The results show that the dispersivity of the soil increases with the increase of depth within 0-30 cm ( surface soil) ; it decreases as the depth increases within in 30-100 cm. Furthermore, the statistical analysis of the dispersivity indexes and physicochemical propertity indexes show that the DP is positively linear correlated with total soluble salt content, sodium ion content, ESP, pH and organic matter content. Meanwhile, it is negatively linear correlated with clay content, and the linear relationship is better. Through the study of the dispersion mechanism of soil samples, it can be concluded that sodium montmorillonite, higher percentage of exchangeable sodium and high pH are the main reasons for the dispersion of soils in western Jilin.  相似文献   

7.
The effects of acid deposition on pine forest ecosystems in Longli of Guizhou Province, southwestern China are studied using indoor experiments and model simulations. Indoor experiments are designed to explore the aluminum toxicity on pine seedlings, and the long-term soil acidification model(LTSAM) and a terrestrial biogeochemistry model(CENTURY) are used to simulate the influences of acid deposition on pine forest ecosystems. The indoor experiment results of aluminum toxicity show that aluminum ions in solution limit plant growth and acid deposition enhances this effect by facilitating the release of aluminum ions from the soil. Pine seedling biomass and root elongation decrease as the aluminum concentration increases. The results of model simulations show that the soil chemistry varies significantly with different changes in acid deposition. When the acid deposition increases, the pH value in the soil solution decreases and the soil Al3+ concentration increases. The increased acid deposition also has negative impacts on the forest ecosystem, i.e., decreases plant biomass, net primary productivity(NPP) and net CO2 uptake. As a result, the soil organic carbon(SOC) decreases because of the limited supply of decomposition material. Thus acid deposition need be reduced to help protect the forest ecosystems.  相似文献   

8.
1 Introduction Microalgae ,asthefirstlinkofmarinefoodchain ,canbeusedfortheaccumulationofpolyunsaturatedfattyacids (PUFAs) ,whichhavebeenshowntobeofmajorimportancenotonlyinthe preventionofhu man’sheartandcirculatorydiseases (DyerbergandJorgensen ,1982 ;Marcus ,1985 )butalsoinaquacul tureasincipientfeed (Sakamotoetal.,1998) .How ever ,thePUFA productivitiesbymicroalgaearelowincomparisonwithbacteriaandfungi.TherearetwopossiblewaysinpromotingthePUFA productionofmicroalgae.Oneistoobtaint…  相似文献   

9.
In this study, a flume experiment was designed to investigate the characteristics of wave-induced pore water pressure in the soil of a silty seabed with different clay contents, soil layer buried depths and wave heights respectively. The study showed that water waves propagating over silty seabed can induce significant change of pore water pressure, and the amplitude of pore pressure depends on depth of buried soil layer, clay content and wave height, which are considered as the three influencing factors for pore water pressure change. The pressure will attenuate according to exponential law with increase of soil layer buried depth, and the attenuation being more rapid in those soil layers with higher clay content and greater wave height. The pore pressure in silty seabed increases rapidly in the initial stage of wave action, then decreases gradually to a stable value, depending on the depth of buried soil layer, clay content and wave height. The peak value of pore pressure will increase if clay content or depth of buried soil layer decreases, or wave height increases. The analysis indicated that these soils with 5% clay content and waves with higher wave height produce instability in bed easier, and that the wave energy is mostly dissipated near the surface of soils and 5% clay content in soils can prevent pore pressure from dissipating immediately.  相似文献   

10.
Understanding the effects of elevation and related factors (climate, vegetation) on the physical and chemical soil properties can help to predict changes in response to future climate or afforestation forcings. This work aims to contribute to the knowledge of soil evolution and the classification of forest soils in relation to elevation in the montane stage, with special attention to podzolization and humus forms. The northern flank of the Moncayo Massif (Iberian Range, SW Europe) provides a unique opportunity to study a forest soils catena within a consistent quartzitic parent material over a relatively steep elevation gradient. With increasing elevation, pH, base saturation, exchangeable potassium, and fine silt-sized particles decrease significantly, while organic matter, the C/N ratio, soil aggregate stability, water repellency and coarse sand-sized particles increase significantly. The soil profiles shared a set of properties in all horizons: loamy-skeletal particle-size, extreme acidity (pH-H2O<5.6) and low base saturation (<50%). The most prevalent soil forming processes in the catena include topsoil organic matter accumulation and even podzolization, which increases with elevation. From the upper to lower landscape positions of wooded montane stage of the Moncayo Massif, mull-moder-mor humus and an Umbrisol-Cambisol-Podzol soil unit sequences were found.  相似文献   

11.
In this paper,the process of wind erosion on two kinds of soil from the agro-pastoral area of Inner Mongolia are studied using wind tunnel experiments,considering the wind speed,blown angle of wind and soil moisture content.The results showed that the modulus of soil wind erosion increases with an increase of wind speed.When the wind speed exceeds a critical value,the soil wind erosion suddenly increases.The critical speed for both kinds of soil is within the range of 7-8m·s-1.For a constant wind speed,the rate of soil wind erosion changes from increasing to falling at a critical soil slope.The critical slope of loam soil and sandy loam soil is 20° and 10°,respectively.Soil moisture content has a significant effect on wind erosion.Soil wind erosion of both soils decreases with an increase of the soil water content in two treatments,however,for treatment two,the increasing trends of wind erosion for two soils with the falling of soil water content are no significant,especially for the loam soil,and in the same soil water content,the wind erosion of two soils in treatment one is significantly higher than treatment two,this indicates reducing the disturbance of soil surface can evidently control the soil wind erosion.  相似文献   

12.
针对纳米塑料颗粒在饱和多孔介质中的迁移及其影响因素, 以纳米聚苯乙烯(PSNPs)作为典型纳米塑料颗粒, 通过实验和理论相结合的方法研究纳米塑料颗粒的迁移规律。以经典DLVO理论计算出PSNPs与石英砂颗粒之间的相互作用能, 分析预测PSNPs与石英砂之间的吸附、聚沉。在柱实验中, 以石英砂作为多孔介质填充到砂柱中, 让PSNPs在一维饱和砂柱中迁移, 研究不同条件下PSNPs的迁移行为和影响因素。结果表明, 当离子强度由1 mmol/L增至50 mmol/L(电解质为NaCl), PSNPs与石英砂颗粒之间的相互作用能的势垒则从215.13 KT逐渐降低至45.9 KT使得PSNPs更易于吸附在石英砂介质表面, 从而降低PSNPs在多孔介质中的迁移能力, PSNPs的穿透率由62.16%降至3.65%。当离子强度由0.1 mmol/L增至5 mmol/L(电解质为CaCl2)时, 势垒则由33.72 KT降至14.03 KT, PSNPs的穿透率从82.46%降至4.27%。这些实验现象说明增加离子强度对PSNPs的穿透起到抑制作用, 且Ca2+比Na+具有更强的电荷屏蔽作用。同时提高PSNPs的初始浓度、流速和介质粒径均可增大PSNPs的穿透率, 而大粒径PNSPs颗粒的穿透率则较小。研究中构建了PSNPs实际运移与理论之间的关系, 进一步推进PSNPs的环境行为和机理研究, 为系统全面评价纳米塑料颗粒在土壤-地下水中的环境风险和生态安全提供科学依据。   相似文献   

13.
Large oilfields are often coincidentally located in major river deltas and wetlands, and potentially damage the structure, function and ecosystem service values of wetlands during oil exploration. In the present study, the effects of crude oil contamination during oil exploration on soil physical and chemical properties were investigated in marshes of the Momoge National Nature Reserve in Jilin Province, China. The concentrations of total petroleum hydrocarbons in the marsh soil near the oil wells are significantly higher than those in the adjacent control marsh. Soil water contents in oil-contaminated marshes are negatively correlated with soil temperature and are significantly lower than those in the control area, especially in fall. Crude oil contamination significantly increases the soil pH up to 8.0, and reduces available phosphorus concentrations in the soil. The concentrations of total organic carbon are significantly different among sampling sites. Therefore, crude oil contamination could potentially alkalinize marsh soils, adversely affect soil fertility and physical properties, and cause deterioration of the marshes in the Momoge National Nature Reserve. Phyto-remediation by planting Calamagrostis angustifolia has the potential to simultaneously restore and remediate the petroleum hydrocarbon-contaminated wetlands. Crude oil contamination affects the soil physical and chemical properties, so developing an effective restoration program in the Momoge wetland is neccesary.  相似文献   

14.
RESEARCHESONSOILENVIRONMENTALBACKGROUNDVALUESINTIBET¥ZhangXiaoping(张晓平)KeYangchuan(科扬川)(ChangchunInstituteofGeography,theChin...  相似文献   

15.
生物样品经高温热解,汞及大量热解气体一同释出。以NaOH和Na2O2为吸附剂,消除酸性及还原性气体的干扰;以覆盖黄土,减缓燃烧过程,消除烟尘及气溶胶的干扰,利用金丝捕汞管吸附热解气体中的汞气,以此测定生物样品中的汞含量。方法快速、简便、使用性强,尤其适合地矿行业应用。  相似文献   

16.
通过对山东省巨野县土壤元素背景值状况的计算和研究,发现土壤中Ca,Cd,Hg,Mg,F等元素显著高于全省和全国背景值;Mo,Pb,Cu,Co等元素则低于全省和全国背景值;其中土壤Mo含量远低于全省和全国平均水平。土壤质地是决定区内土壤N,K,Mg等元素含量的关键;由黄河冲积物发育的土壤P含量普遍较高,TOC空间分布与N密切相关。城镇及工业区土壤中Hg和Pb的积累趋势明显。元素分级结果显示,区内土壤K和有机质比较丰富;N,P和有机质缺乏区占比分别为23.82%,15.39%和6.47%。微量元素中Ca,Mg,S,Cl等元素较为丰富;而Mo,Si,Se,Co,Zn,Cu,Fe,Mn等元素的缺乏状况最突出。土地质量地球化学评价分等结果显示,全区大部分土地质量优良,区内东北部和中西部地区土壤肥力较好,但有害元素含量偏高,西北部地区肥力较差导致土地质量等级偏低。全区土壤有机质含量不足以满足农业生产需要,加之局部土壤盐分偏高,对粮食作物生长不利。区内土壤环境质量水平总体较好,多数重金属元素分布受地质背景控制,但Hg和Pb污染位置与城镇及工业区分布明显存在一定关系,高值区多呈点状分布于人类活动强烈的地带,说明工业或生活排放对区内土壤中Hg,Pb的积累贡献较大。  相似文献   

17.
通过测定雷州半岛南部845个耕地土壤样品pH、有机质、全氮、有效磷、速效钾、碱解氮的含量,采用层次分析法确定各肥力评价指标权重,应用模糊数学法对该区域耕地土壤肥力进行综合评价,并利用ArcGIS 9.2软件对土壤肥力空间变异进行分析.结果表明:雷州半岛南部土壤有机质、全氮、有效磷、速效钾、碱解氮平均值分别为26.18 g/kg、1.48 g/kg 、34.63 mg/kg、158.57 mg/kg、133.17 mg/kg;土壤速效磷的变异系数最高,为103.14%,属强变异性,有机质、速效钾、碱解氮、全氮的变异系数属中等变异性,pH值的变异系数最小.土壤肥力总体水平处于中等偏低;从空间分布来看,土壤肥力中部高,东北、西南部相对较低  相似文献   

18.
硒是人体必需微量元素之一,而水稻作为我国第一大主粮,其硒含量的高低与人体健康关系密切,因此研究水稻-根系土体系中硒含量的影响因素,可为富硒地区水稻种植及开发富硒农业提供科学理论依据。以赣南为研究区,采集138组水稻籽实及配套根系土样品进行了测试分析,探究赣南地区土壤理化条件对硒在水稻及其根系土中的实际影响效应,对富硒水稻及土壤进行质量综合评价,并构建富硒水稻地球化学适生模型。结果表明:赣南地区水稻根系土Se平均质量分数为0.29mg/kg,Se水平主要为足硒水平,富硒土壤仅占14.5%;有效硒(Sebio)质量分数平均为46.0μg/kg,占总硒质量分数的16.44%;水稻的Se平均质量分数为0.05mg/kg,无重金属元素超标的安全富硒水稻率达到45%,富硒水稻对Cd,Zn,Cu的生物富集能力较强。相关分析表明,根系土中Se质量分数与TFe2O3,MnO,MgO,有机碳(Corg)质量分数呈极显著正相关,与主要重金属元素存在一定程度的伴生关系。水稻Se质量分数与根系土Se,Sebio,SiO2质量分数和pH值呈极显著正相关,与Al2O3,有机碳(Corg)质量分数呈极显著负相关。单项污染指数表明研究区根系土中重金属元素基本属于清洁和尚清洁水平,Cd,Pb,As,Hg,Cu存在一些样品超标,其中Cd超标率最高;内梅罗综合污染指数表征77.0%的样品属于安全等级;富硒土壤综合评估显示研究区主要为良级富硒土壤,优级富硒土壤仅占8.7%。通过最佳子集回归分析最终选取了根系土总Se、有机质、pH值为自变量构建富硒水稻地球化学适生模型,拟合的模型可以解释水稻中Se30.6%的变异。  相似文献   

19.
Dissolved organic carbon (DOC) is an important component of the terrestrial carbon cycle. However, the sources and controlling factors of DOC in soils remain uncertain. In this study, the effects of nitrogen (N) amendment and crop growth on DOC in soil solution were examined at a maize-wheat rotated field located in the central Sichuan Basin in southwestern China. Nitrogen treatments in this study included 150 kg N ha-1 season-1, 200 kg N ha-1 season-1 and the control without any fertilizer application. During the whole experimental period, we observed significant decreases (p<0.05) in DOC concentrations in the sampled soil solutions associated with increase in N inputs at the bare soil plots, but no change in DOC at the plots with crop growth. The estimated average contributions of plantderived DOC were 16%, 24% and 32% of total DOC in the summer maize season and 21%, 32% and 38% in the winter wheat season along with the gradient of N fertilizer application rates. The results implied that the crop growth could play a key role in the soil DOC production, and the N input enhanced DOC production by increasing crop growth. The relationship between the DOC concentrations and the crop root biomass was statistically significant for both the maize and winter wheat seasons. Our observations indicated that crop growth exerted greater influence on the seasonal variability of DOC concentration in soil solutions at the experimental site, which overwhelmed the effect of soil native organic matter decomposition on DOC concentrations in soil solutions.  相似文献   

20.
Soil organic carbon is of great importance to terrestrial ecosystems.Studies on the amount and spatial distribution of soil organic carbon stock in various types of soil can help to better understand the role of soil in the global carbon cycle and provide a scientific basis for the assessment of the magnitude of carbon stored in a given area.Here we present estimates of soil organic carbon stock in soils in the upper reaches of the Yangtze River based on soil types as defined by Chinese Soil Taxonomy and recently compiled into a digital soil database.The results showed that the total soil organic carbon stock of the upper Yangtze River to a depth of 100 cm was 1.452×1013kg.The highest soil organic carbon stock was found in felty soils(2.419×1012kg),followed by dark brown soils(1.269×1012kg),and dark felty soils(1.139×1012kg).Chernozems and irrigation silting soils showed the lowest soil organic carbon stock,mainly due to the small total area of such soils.The soil organic carbon density of these major soil types ranged from 5.6 to 26.1 kg m-2.The average soil organic carbon density of the upper reaches of the Yangtze River was 16.4 kg m-2,which was higher than that of the national average.Soil organic carbon density indicated a distinct decreasing trend from west to east,which corresponds to the pattern of increasing temperature from cold to subtropical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号