首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

2.
We present a comprehensive near-infrared study of two molecular bow shocks in two protostellar outflows, HH 99 in R Coronae Australis and VLA 1623A (HH 313) in Rho Ophiuchi. New, high-resolution, narrow-band images reveal the well-defined bow shock morphologies of both sources. These are compared with two-dimensional MHD modelling of molecular bows from which we infer flow inclination angles, shock speeds and the magnetic field in the pre-shock gas in each system. With combined echelle spectroscopy and low-resolution K -band spectra we further examine the kinematics and excitation of each source. Bow shock models are used to interpret excitation (CDR) diagrams and estimate the extinction and, in the case of VLA 1623, the ortho–para ratio associated with the observed H2 population. For the first time, morphology, excitation and kinematics are fitted with a single bow shock model.
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe  ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s−1. VLA 1623A is interpreted in terms of a C-type bow moving towards the observer (at an angle to the line of sight of ∼75°) at a speed of ∼80 km s−1. The magnetic field associated with HH 99 is thought to be orientated parallel to the flow axis; in VLA 1623A the field is probably oblique to the flow axis, since this source is clearly asymmetric in our H2 images.  相似文献   

3.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

4.
We demonstrate that a wide range of molecular hydrogen excitation can be observed in protostellar outflows at wavelengths in excess of 5 μm. Cold H2 in DR 21 is detected through the pure rotational transitions in the ground vibrational level (0–0). Hot H2 is detected in pure rotational transitions within higher vibrational levels (1–1, 1–2, etc.). Although this emission is relatively weak, we have detected two 1–1 lines in the DR 21 outflow with the ISO SWS instrument. We thus investigate molecular excitation over energy levels corresponding to the temperature range 1015–15 722 K, without the uncertainty introduced by differential extinction when employing near-infrared data.
This gas is thermally excited. We uncover a rather low H2 excitation in the DR 21 West Peak. The line emission cannot be produced from single C-shocks or J-shocks; a range of shock strengths is required. This suggests that bow shocks and/or bow-generated supersonic turbulence is responsible. We are able to distinguish this shock-excited gas from the fluoresced gas detected in the K band, providing support for the dual-excitation model of Fernandes, Brand & Burton.  相似文献   

5.
We report the discovery of high-velocity dense gas from a bipolar outflow source near NGC 2068 in the L1630 giant molecular cloud. CO and HCO+ J =3→2 line wings have a bipolar distribution in the vicinity of LBS 17-H with the flow orientated roughly east–west and perpendicular to the elongation of the submillimetre dust continuum emission. The flow is compact (total extent ∼0.2 pc) and contains of the order of 0.1 M of swept-up gas. The high-velocity HCO+ emission is distributed over a somewhat smaller area <0.1 pc in extent.
A map of C18O J =2→1 emission traces the LBS 17 core and follows the ambient HCO+ emission reasonably well, with the exception of the direction towards LBS 17-H where there is a significant anticorrelation between the C18O and HCO+. A comparison of beam-matched C18O and dust-derived H2 column densities suggests that CO is depleted by up to a factor of ∼50 at this position if the temperature is as low as 9 K, although the difference is substantially reduced if the temperature is as high as 20 K. Chemical models of collapsing clouds can account for this discrepancy in terms of different rates of depletion on to dust grains for CO and HCO+.
LBS 17-H has a previously known water maser coincident with it but there are no known near-infrared, IRAS or radio continuum sources associated with this object, leading to the conclusion that it is probably very young. A greybody fit to the continuum data gives a luminosity of only 1.7 L and a submillimetre-to-bolometric luminosity ratio of 0.1, comfortably satisfying the criteria for classification as a class 0 protostar candidate.  相似文献   

6.
We present new, high-resolution, near-infrared images of the HH 1 jet and bow shock. H2 and [Fe  ii ] images are combined to trace excitation changes along the jet and across the many shock features in this flow. Echelle spectra of H2 profiles towards a few locations in HH 1 are also discussed. Gas excitation in oblique, planar C-type shocks best explains the observations, although J-type shocks must be responsible for the observed [Fe  ii ] emission features. Clearly, no single shock model can account for all of the observations. This will probably be true of most, if not all, Herbig–Haro flows.  相似文献   

7.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

8.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

9.
We present an in-depth analysis of molecular excitation in 11 H2-bright planetary and protoplanetary nebulae (PN and PPN). From newly acquired K -band observations, we extract a number of spectra at positions across each source. H2 line intensities are plotted on 'column density ratio' diagrams so that we may examine the excitation in and across each region. To achieve this, we combine the shock models of Smith, Khanzadyan & Davis with the photodissociation region (PDR) models of Black & van Dishoeck to yield a shock-plus-fluorescence fit to each data set.
Although the combined shock + fluorescence model is needed to explain the low- and high-energy H2 lines in most of the sources observed (fluorescence accounts for much of the emission from the higher-energy H2 lines), the relative importance of shocks over fluorescence does seem to change with evolutionary status. We find that shock excitation may well be the dominant excitation mechanism in the least evolved PPN (CRL 2688 – in both the bipolar lobes and in the equatorial plane) and in the most evolved PN considered (NGC 7048). Fluorescence, on the other hand, becomes more important at intermediate evolutionary stages (i.e. in 'young' PN), particularly in the inner core regions and along the inner edges of the expanding post-asymptotic giant branch (AGB) envelope. Since H2 line emission seems to be produced in almost all stages of post-AGB evolution, H2 excitation may prove to be a useful probe of the evolutionary status of PPN and PN alike. Moreover, shocks may play an important role in the molecular gas excitation in (P)PN, in addition to the low- and/or high-density fluorescence usually attributed to the excitation in these sources.  相似文献   

10.
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η  Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car.  相似文献   

11.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

12.
The results of a survey searching for outflows using near-infrared imaging are presented. Targets were chosen from a compiled list of massive young stellar objects associated with methanol masers in linear distributions. Presently, it is a widely held belief that these methanol masers are found in (and delineate) circumstellar accretion discs around massive stars. If this scenario is correct, one way to test the disc hypothesis is to search for outflows perpendicular to the methanol maser distributions. The main objective of the survey was to obtain wide-field near-infrared images of the sites of linearly distributed methanol masers using a narrow-band 2.12-μm filter. This filter is centred on the  H2 v = 1–0 S(1)  line; a shock diagnostic that has been shown to successfully trace CO outflows from young stellar objects. 28 sources in total were imaged of which 18 sources display H2 emission. Of these, only two sources showed emission found to be dominantly perpendicular to the methanol maser distribution. Surprisingly, the H2 emission in these fields is not distributed randomly, but instead the majority of sources are found to have H2 emission dominantly parallel to their distribution of methanol masers. These results seriously question the hypothesis that methanol masers exist in circumstellar discs. The possibility that linearly distributed methanol masers are instead directly associated with outflows is discussed.  相似文献   

13.
We present hydrodynamic simulations of molecular outflows driven by jets with a long period of precession, motivated by observations of arc-like features and S-symmetry in outflows associated with young stars. We simulate images of not only H2 vibrational and CO rotational emission lines, but also of atomic emission. The density cross-section displays a jaw-like cavity, independent of precession rate. In molecular hydrogen, however, we find ordered chains of bow shocks and meandering streamers which contrast with the chaotic structure produced by jets in rapid precession. A feature particularly dominant in atomic emission is a stagnant point in the flow that remains near the inlet and alters shape and brightness as the jet skims by. Under the present conditions, slow jet precession yields a relatively high fraction of mass accelerated to high speeds, as also attested to in simulated CO line profiles. Many outflow structures, characterized by HH 222 (continuous ribbon), HH 240 (asymmetric chains of bow shocks) and RNO 43N (protruding cavities), are probably related to the slow-precession model.  相似文献   

14.
We report the first detection of CO in the bulge of M31. The 12CO (1–0) and (2–1) lines are both detected in the dust complex D395A/393/384, at 1.3 arcmin (∼0.35 kpc) from the centre. From these data and from visual extinction data, we derive a CO luminosity to reddening ratio (and a CO luminosity to H2 column density ratio) quite similar to that observed in the local Galactic clouds. The (2–1) to (1–0) line intensity ratio points to a CO rotational temperature and a gas kinetic temperature of >10 K. The molecular mass of the complex, inside a 25-arcsec (100 pc) region, is 1.5×104 M.  相似文献   

15.
We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR)  G359.1–0.5  and the non-thermal radio filament known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock, while the H2 filament is located at the boundary between the pre-shock and post-shock regions.  相似文献   

16.
Compact regions of enhanced HCO+ and NH3 emission have been detected close to a number of Herbig–Haro objects. An interpretation of these detections is the following: a transient clump within the molecular cloud has been irradiated by the shock that generates the Herbig–Haro object. The irradiation releases icy mantles from the grains within the transient clump and initiates a photochemistry. On the basis of this picture, we have developed an extensive chemical model which predicts that a wide range of species, other than NH3 and HCO+, should also be detectable. These include CH3OH, H2S, C3H4, H2CO, SO, SO2, H2CS and NS. The chemical effects should last ∼  104 yr  .  相似文献   

17.
The Cepheus A star-forming region has been investigated through a multiline H2S and SO2 survey at millimetre wavelengths. Large-scale maps and high-resolution line profiles reveal the occurrence of several outflows. Cep A East is associated with multiple mass-loss processes: in particular, we detect a 0.6-pc jet-like structure which shows for the first time that the Cep A East young stellar objects are driving a collimated outflow moving towards the south.
The observed outflows show different clumps associated with definitely different H2S/SO2 integrated emission ratios, indicating that the gas chemistry in Cepheus A has been altered by the passage of shocks. H2S appears to be more abundant than SO2 in high-velocity clumps, in agreement with chemical models. However, we also find quite small H2S linewidths, suggestive of regions where the evaporated H2S molecules had enough time to slow down but not to freeze out on to dust grains. Finally, comparison between the line profiles indicates that the excitation conditions increase with the velocity, as expected for a propagation of collimated bow shocks.  相似文献   

18.
We report the first infrared proper motion measurements of the HerbigHaro objects in OMC-1 using a 4-yr time baseline. The [Fe  ii ]-emitting bullets are moving of the order of 0.08 arcsec per year, or at about 170 km s1. The direction of motion is similar to that inferred from their morphology. The proper motions of H2-emitting wakes behind the [Fe  ii ] bullets, and of newly found H2 bullets, are also measured. H2 bullets have smaller proper motion than [Fe  ii ] bullets, while H2 wakes with leading [Fe  ii ] bullets appear to move at similar speeds to their associated bullets. A few instances of variability in the emission can be attributed to dense, stationary clumps in the ambient cloud being overrun, setting up a reverse-oriented bullet. Differential motion between [Fe  ii ] bullets and their trailing H2 wakes is not observed, suggesting that these are not separating, and also that they have reached a steady-state configuration over at least 100 yr. The most distant bullets have, on average, larger proper motions, but are not consistent with free expansion. Nevertheless, an impulsive, or short-lived (<<1000 yr), duration for their origin seems likely.  相似文献   

19.
We have computed the time dependence of the H2 rovibrational emission spectrum from molecular outflows. This emission arises in shock waves generated by the impact of jets, associated with low-mass star formation, on molecular gas. The shocks are unlikely to have attained a state of equilibrium, and so their structure will exhibit both C- and J-type characteristics. The rotational excitation diagram is found to provide a measure of the age of the shock; in the case of the outflow observed in Cepheus A West by the ISO satellite, the shock age is found to be approximately 1.5×103 yr. Emission by other species, such as NH3 and SiO, is also considered, as are the intensities of the fine-structure transitions of atoms and ions.  相似文献   

20.
We note that H2 emitting planetary nebulae tend to have Zanstra temperatures   T Z(He  ii ) > 90 kK  . This is shown to be consistent with a large evolutionary lifetime, and the kinematic ages of the envelopes. Non-local thermodynamic equilibrium stellar atmospheric modelling also shows that levels of soft X-ray emission increase more rapidly than has previously been assumed, and are preferentially large in H2 emitting sources. It is suggested that this may hold the key to explaining the strengths of the H2 transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号