首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors have developed a new method termed “Polygon Shift Method” that enables the generation of a 3D view map of a city with tall buildings with a simplified procedure to shift a polygon and check the overlap between the original and shifted polygon. Boolean operations are applied with a newly defined “Fore or Aft” side and a “Depth Distance” that functionally express the visibility criteria or hidden point processing in the 3D view. Since the polygon shift method can be operated with a raster-based structure, the computer processing for generation of a 3D view map of buildings with shadow is simple and efficient.  相似文献   

2.
Object based image analysis (OBIA) is an approach increasingly used in classifying high spatial resolution remote sensing images. Object based image classifiers first segment an image into objects (or image segments), and then classify these objects based on their attributes and spatial relations. Numerous algorithms exist for the first step of the OBIA process, i.e. image segmentation. However, less research has been conducted on the object classification part of OBIA, in particular the spatial relations between objects that are commonly used to construct rules for classifying image objects and refining classification results. In this paper, we establish a context where objects are areal (not points or lines) and non-overlapping (we call this “single-valued” space), and propose a framework of binary spatial relations between segmented objects to aid in object classification. In this framework, scale-dependent “line-like objects” and “point-like objects” are identified from areal objects based on their shapes. Generally, disjoint and meet are the only two possible topological relations between two non-overlapping areal objects. However, a number of quasi- topological relations can be defined when the shapes of the objects involved are considered. Some of these relations are fuzzy and thus quantitatively defined. In addition, we define the concepts of line-like objects (e.g. roads) and point-like objects (e.g. wells), and develop the relations between two line-like objects or two point-like objects. For completeness, cardinal direction relations and distance relations are also introduced in the proposed context. Finally, we implement the framework to extract roads and moving vehicles from an aerial photo. The promising results suggest that our methods can be a valuable tool in defining rules for object based image analysis.  相似文献   

3.
Three-dimensional particle tracking velocimetry (3D-PTV) has been used to quantify simulated ocean circulation and internal waves, in a 5 m diameter rotating tank. According to hydrostatic theory the water surface in the rotating tank will attain the surface of an elliptic paraboloid of revolution. Three “off the shelf” video cameras mounted above the water surface, rotating with the tank, monitored the 3D displacements of sparsely distributed surface and neutrally buoyant submerged particles (diameter of 0.01 m) inside a water volume of ca. 0.5 × 0.7 × 0.5 m3. A numerical procedure for the calibrations of the photogrammetric system is described. The particles were automatically tracked through a time series of consistent image triplets using an epipolar approach. The experiments gave a standard error σo = 0.33 pixels and a repetition accuracy, RMSE = 0.15 mm in X, Y and 0.5 mm in Z (the height).  相似文献   

4.
In recent years, the visualization of geospatial data has undergone dramatic and important developments. Next to static maps, nowadays, immersive and highly interactive virtual environments can be used to explore and present dynamic geospatial data. Additionally, the World Wide Web has developed into a prominent medium to disseminate geospatial data and maps. In visualizing geospatial data, methods and techniques from fields, such as scientific visualization and information visualization, are applied because of the large volumes of data at hand. This has accumulated in what is known as geovisualization—the use of visual geospatial displays to explore data and through that exploration to generate hypotheses, develop problem solutions and construct knowledge. Maps and other linked graphics play a key role in this process. The objective of this paper is to demonstrate the usefulness of geovisualization and, in particular, how alternative graphic representations can stimulate the visual thought process. This is demonstrated by applying geovisualization techniques to Minard's well-known map of Napoleon's 1812 campaign into Russia, the “Carte figurative des pertes successives en hommes de l'Armee Française dans la campagne de Russie 1812–1813” (http://www.itc.nl/personal/kraak/1812/).  相似文献   

5.
In national and international economics, geographic information plays a role which is generally acknowledged to be important but which is however, difficult to assess quantitatively, its applications being rather miscellaneous and indirect. Computer graphics and telecommunications increae that importance still more and justify many investments and research into new cartographic forms.As part of its responsibility for participating in the promotion of those developments, by taking into account needs expressed by public or private users, the National Council for Geographic Information (C.N.I.G.) has undertaken a general evaluation of the economic and social utility of geographic information in France. The study involves an estimation of the cost of production and research activities, which are probably about 0.1% of the Cross National Product—similar to many other countries. It also devised a method of estimating “cost/advantage” ratios applicable to these “intangible” benefits.Within that framework, remote sensing emphasizes particular aspects related both to the increase of economic performances in cartographic production and to the advent of new products and new ways of utilization. A review of some significant sectors shows effective earnings of about 10–20%, or even 50% or 100% of the costs, and these are doubtless much greater for the efficacy in the exploitation of products. Finally, many applications, entirely new result from extensions in various fields which would have been impossible without remote sensing: here the “cost advantage” ratio cannot even be compared with previous processes.Studies were undertaken in parallel for defining different types of products derived from satellite imagery, as well as those domains where development effort is required in order to make new advances.  相似文献   

6.
Several procedures for solving, in a closed form the GPS pseudo-ranging four-point problem P4P in matrix form already exist. We present here alternative algebraic procedures using Multipolynomial resultant and Groebner basis to solve the same problem. The advantage is that these algebraic algorithms have already been implemented in algebraic software such as “Mathematica” and “Maple”. The procedures are straightforward and simple to apply. We illustrate here how the algebraic techniques of Multipolynomial resultant and Groebner basis explicitly solve the nonlinear GPS pseudo-ranging four-point equations once they have been converted into algebraic (polynomial) form and reduced to linear equations. In particular, the algebraic tools of Multipolynomial resultant and Groebner basis provide symbolic solutions to the GPS four-point pseudo-ranging problem. The various forward and backward substitution steps inherent in the clasical closed form solutions of the problem are avoided. Similar to the Gauss elimination techniques in linear systems of equations, the Multipolynomial resultant and Groebner basis approaches eliminate several variables in a multivariate system of nonlinear equations in such a manner that the end product normally consists of univariate polynomial equations (in this case quadratic equations for the range bias expressed algebraically using the given quantities) whose roots can be determined by existing programs (e. g., the roots command in MATLAB). © 2002 Wiley Periodicals, Inc.  相似文献   

7.
MERIS and the red-edge position   总被引:1,自引:0,他引:1  
The Medium Resolution Imaging Spectrometer (MERIS) is a payload component of Envisat-1. MERIS will be operated over land with a standard 15 band setting acquiring images with a 300 m spatial resolution. The red-edge position (REP) is a promising variable for deriving foliar chlorophyll concentration, which plays an important role in ecosystem processes. The objectives of this paper are: (1) to study which factors effect the REP of vegetation, (2) to study whether this REP can be derived from the MERIS standard band setting and (3) to show what REP represents at the scale of MERIS data. Two different data sets were explored for simulating the REP using MERIS bands: (1) simulated data using reflectance models and (2) airborne reflectance spectra of an agricultural area obtained by the airborne visible-infrared imaging spectrometer (AVIRIS). A “linear method”, assuming a straight slope of the reflectance spectrum around the midpoint of the slope, was a robust method for determining the REP and the MERIS bands at 665, 708.75, 753.75 and 778.75 nm could be used for applying the “linear method” for REP estimation. Results of the translation to the scale of MERIS data were very promising for applying MERIS at, for instance, the ecosystem level.  相似文献   

8.
The three-dimensional (3-D) resection problem is usually solved by first obtaining the distances connecting the unknown point P{X,Y,Z} to the known points Pi{Xi,Yi,Zi}i=1,2,3 through the solution of the three nonlinear Grunert equations and then using the obtained distances to determine the position {X,Y,Z} and the 3-D orientation parameters {,, }. Starting from the work of the German J. A. Grunert (1841), the Grunert equations have been solved in several substitutional steps and the desire as evidenced by several publications has been to reduce these number of steps. Similarly, the 3-D ranging step for position determination which follows the distance determination step involves the solution of three nonlinear ranging (`Bogenschnitt') equations solved in several substitution steps. It is illustrated how the algebraic technique of Groebner basis solves explicitly the nonlinear Grunert distance equations and the nonlinear 3-D ranging (`Bogenschnitt') equations in a single step once the equations have been converted into algebraic (polynomial) form. In particular, the algebraic tool of the Groebner basis provides symbolic solutions to the problem of 3-D resection. The various forward and backward substitution steps inherent in the classical closed-form solutions of the problem are avoided. Similar to the Gauss elimination technique in linear systems of equations, the Groebner basis eliminates several variables in a multivariate system of nonlinear equations in such a manner that the end product normally consists of a univariate polynomial whose roots can be determined by existing programs e.g. by using the roots command in Matlab.Acknowledgments.The first author wishes to acknowledge the support of JSPS (Japan Society of Promotion of Science) for the financial support that enabled the completion of the write-up of the paper at Kyoto University, Japan. The author is further grateful for the warm welcome and the good working atmosphere provided by his hosts Professors S. Takemoto and Y. Fukuda of the Department of Geophysics, Graduate School of Science, Kyoto University, Japan.  相似文献   

9.
This study compares the ability of spectral approaches operating in the shortwave optical domain to predict absolute and relative vegetation water content (AWC and RWC, respectively) across northern prairie grassland–shrubland. We collected vegetation water content and spectral radiometer data over plots of comparable ground resolution (0.5 m) at seven field sites in the Canadian mixed grass prairie in June 2004. We then aggregated observations to scale these data “up” to an observational scale consistent with that of Landsat-TM satellite imagery (30 m). This allowed us to assess abilities of three spectral approaches to predict AWC and RWC at both observational scales. These approaches were: individual vegetation indices, a combination of spectral bands and a combination of spectral derivatives. Our results showed that (a) the band-combination approach provides the most accurate and precise estimates of AWC and RWC at both 0.5 and 30 m sampling resolutions; (b) the combination of bands providing the greatest predictive abilities are those that emphasize the contrast in reflectance between the NIR and SWIR spectral regions; (c) the band-combination approach predicts AWC with much greater accuracy and precision than RWC and (d) the predictive ability of the band-combination approach decreases only slightly when plot-level data are aggregated to a 30 m sampling resolution. These results are generally consistent with the results of other studies and with theory. While our results suggest that simple spectral methods (e.g. linear band-combinations or indices) are good predictors of AWC over grazed and ungrazed grassland–shrubland landscapes at plot- and Landsat spatial resolutions, they are less encouraging for the estimation of RWC. Despite their good predictive abilities, the temporal and geographical portabilities of the spectral approaches for estimating AWC must be further assessed before they can be considered reliable and robust predictive tools. Thus, the further testing of these techniques over larger geographical extents is required.  相似文献   

10.
Spatial discretisation plays an important role in many numerical environmental models. This paper studies the control of spatial discretisation in coastal oil spill modelling with a view to assure the quality of modelling outputs for given spatial data inputs. Spatial data analysis techniques are effective for investigating and improving the spatial discretisation in different phases of the modelling. Proposed methods are implemented and tested with experimental models. A new “Automatic Search” method based on GIS zone design principles is shown to significantly improve discretisation of bathymetric data and hydrodynamic modelling outputs. The concepts and methods developed in the study are expected to have general relevance for a range of applications in numerical environmental modelling.  相似文献   

11.
On kalman filter for linear system with colored measurement noise   总被引:1,自引:0,他引:1  
Guobin Chang 《Journal of Geodesy》2014,88(12):1163-1170
The Kalman filter for linear systems with colored measurement noises is revisited. Besides two well-known approaches, i.e., Bryson’s and Petovello’s, another measurement time difference-based approach is introduced. This approach is easy to be implemented and generalized to nonlinear system, and can provide filtering solutions directly. A unified view on these approaches is provided, and the equivalence between any two of the three is proved. In the case study part it is validated that, compared to the approach that neglects the time correlations, the approaches that take them into account not only avoid overly optimistically evaluating the estimate, but also improve the transient accuracy of the estimate.  相似文献   

12.
Uncertainties in polar motion and length-of-day measurements are evaluated empirically using several data series from the space-geodetic techniques of the global positioning system (GPS), satellite laser ranging (SLR), and very long baseline interferometry (VLBI) during 1997–2002. In the evaluation procedure employed here, known as the three-corner hat (TCH) technique, the signal common to each series is eliminated by forming pair-wise differences between the series, thus requiring no assumed values for the “truth” signal. From the variances of the differenced series, the uncertainty of each series can be recovered when reasonable assumptions are made about the correlations between the series. In order to form the pair-wise differences, the series data must be given at the same epoch. All measurement data sets studied here were sampled at noon (UTC); except for the VLBI series, whose data are interpolated to noon and whose UT1 values are also numerically differentiated to obtain LOD. The numerical error introduced to the VLBI values by the interpolation and differentiation is shown to be comparable in magnitude to the values determined by the TCH method for the uncertainties of the VLBI series. The TCH estimates for the VLBI series are corrupted by such numerical errors mostly as a result of the relatively large data intervals. Of the remaining data sets studied here, it is found that the IGS Final combined series has the smallest polar motion and length-of-day uncertainties.  相似文献   

13.
The previous work of Xu on discrete nonlinear filtering is extended to continuous systems. The new results are summarized as follows: (1) a second-order unbiased prediction of the true state governed by a vector stochastic differential equation is worked out; (2) a set of coupled differential equations for a new truncated second-order nonlinear filter and its variance–covariance matrix are derived from the frequentist point of view. The new filter is proved to be unbiased to the second-order approximation; and, most importantly, (3) comparison of the new filtering and accuracy results with the literature on nonlinear filtering has indicated that more than 40 years of nonlinear filtering of continuous systems may have foundational problems.Acknowledgments.This work is supported by a Grant-in-Aid for Scientific Research (C13640422). The author thanks Prof J.A.R. Blais, Prof A. Dermanis and Prof B. Schaffrin for their constructive comments.  相似文献   

14.
A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton–Raphson.  相似文献   

15.
Objective comparison of classification performance of earth observation images, acquired at different spatial resolutions (e.g. NOAA-AVHRR, IRS-MOS, IRS-WiFS, Landsat-TM, IRS-LISS), is complicated because both class definition and training site selection are hampered by the inherent scale differences. This paper presents a new, generic method to compare the information content of such a set of images, the “Stained Glass Procedure”. It overcomes the stated problems by computing the scale-dependent, internal spectral variation in an image and by using this as an indicator for land cover information. The Stained Glass Procedure creates segments in the images and calculates the internal spectral variation in a high-spatial-resolution image for each segment. For each image from the set the average variance, weighted to area, is calculated. The Stained Glass Procedure can be used to predict the performance of sensors that are not available, yet, or to roughly determine the optimal spatial resolution for the classification of a specific area.The procedure was applied to images with pixel sizes ranging from 23 to 1100 m. Classification detail of Envisat-MERIS (300 m pixel size), not included in the image set, could be predicted accurately using the Stained Glass Procedure.The Stained Glass Procedure applies one procedure to all images, without any subjective decision during the analysis, thus offering a method to compare images with different pixel sizes in terms of classification detail that is truly objective.  相似文献   

16.
The use of GPS for establishing height control in an area where levelling data are available can involve the so-called GPS/levelling technique. Modelling of the GPS/levelling geoid undulations has usually been carried out using polynomial surface fitting, least-squares collocation (LSC) and finite-element methods. Artificial neural networks (ANNs) have recently been used for many investigations, and proven to be effective in solving complex problems represented by noisy and missing data. In this study, a feed-forward ANN structure, learning the characteristics of the training data through the back-propagation algorithm, is employed to model the local GPS/levelling geoid surface. The GPS/levelling geoid undulations for Istanbul, Turkey, were estimated from GPS and precise levelling measurements obtained during a field study in the period 1998–99. The results are compared to those produced by two well-known conventional methods, namely polynomial fitting and LSC, in terms of root mean square error (RMSE) that ranged from 3.97 to 5.73 cm. The results show that ANNs can produce results that are comparable to polynomial fitting and LSC. The main advantage of the ANN-based surfaces seems to be the low deviations from the GPS/levelling data surface, which is particularly important for distorted levelling networks.  相似文献   

17.
 The standard analytical approach which is applied for constructing geopotential models OSU86 and earlier ones, is based on reducing the boundary value equation to a sphere enveloping the Earth and then solving it directly with respect to the potential coefficients n,m . In an alternative procedure, developed by Jekeli and used for constructing the models OSU91 and EGM96, at first an ellipsoidal harmonic series is developed for the geopotential and then its coefficients n,m e are transformed to the unknown n,m . The second solution is more exact, but much more complicated. The standard procedure is modified and a new simple integral formula is derived for evaluating the potential coefficients. The efficiency of the standard and new procedures is studied numerically. In these solutions the same input data are used as for constructing high-degree parts of the EGM96 models. From two sets of n,m (n≤360,|m|≤n), derived by the standard and new approaches, different spectral characteristics of the gravity anomaly and the geoid undulation are estimated and then compared with similar characteristics evaluated by Jekeli's approach (`etalon' solution). The new solution appears to be very close to Jekeli's, as opposed to the standard solution. The discrepancies between all the characteristics of the new and `etalon' solutions are smaller than the corresponding discrepancies between two versions of the final geopotential model EGM96, one of them (HDM190) constructed by the block-diagonal least squares (LS) adjustment and the other one (V068) by using Jekeli's approach. On the basis of the derived analytical solution a new simple mathematical model is developed to apply the LS technique for evaluating geopotential coefficients. Received: 12 December 2000 / Accepted: 21 June 2001  相似文献   

18.
The conventional international origin (CIO), established from observations made a century ago, is not directly related to observations by modern space-geodetic techniques. Both the greater precision of these techniques and improved knowledge of the structure of the Earth justify the need for a new CIO. We analyze recent polar motion time-series (VLBI, SLR, and GPS) to test estimators that might be used to establish such a new conventional origin. This new origin would be defined as the barycenter of the motion of the pole for a specific epoch. Consistency among the series examined is of the order of 2 milli-arc-seconds. A drift model can be employed in the analysis of specific series to establish an origin as the barycenter at a specific epoch, rather than the midpoint of the series. As an example, we estimate a “Conventional International Reference Origin” for the year 2000.0, using polar motion series that began in 1984.  相似文献   

19.
Motivated by the existing theory of the geometric characteristics of linear generalized inverses of linear mappings, an attempt is made to establish a corresponding mathematical theory for nonlinear generalized inverses of nonlinear mappings in finite- dimensional spaces. The theory relies on the concept of fiberings consisting of disjoint manifolds (fibers) in which the domain and range spaces of the mappings are partitioned. Fiberings replace the quotient spaces generated by some characteristic subspaces in the linear case. In addition to the simple generalized inverse, the minimum-distance and the x 0-nearest generalized inverse are introduced and characterized, in analogy with the least-squares and the minimum-norm generalized inverses of the linear case. The theory is specialized to the geodetic mapping from network coordinates to observables and the nonlinear transformations (Baarda's S-transformations) between different solutions are defined with the help of transformation parameters obtained from the solution of nonlinear equations. In particular, the transformations from any solution to an x 0-nearest solution (corresponding to Meissl's inner solution) are given for two- and three-dimensional networks for both the similarity and the rigid transformation case. Finally the nonlinear theory is specialized to the linear case with the help of the singular-value decomposition and algebraic expressions with specific geometric meaning are given for all possible types of generalized inverses. Received: 11 April 1996 / Accepted: 19 April 1997  相似文献   

20.
Least-squares by observation equations is applied to the solution of geodetic boundary value problems (g.b.v.p.). The procedure is explained solving the vectorial Stokes problem in spherical and constant radius approximation. The results are Stokes and Vening-Meinesz integrals and, in addition, the respective a posteriori variance-covariances. Employing the same procedure the overdeterminedg.b.v.p. has been solved for observable functions potential, scalar gravity, astronomical latitude and longitude, gravity gradients Гxz, Гyz, and Гzz and three-dimensional geocentric positions. The solutions of a large variety of uniquely and overdeterminedg.b.v.p.'s can be obtained from it by specializing weights. Interesting is that the anomalous potential can be determined—up to a constant—from astronomical latitude and longitude in combination with either {Гxzyz} or horizontal coordinate corrections Δx and Δy, or both. Dual to the formulation in terms of observation equations the overdeterminedg.b.v.p.'s can as well be solved by condition equations. Constant radius approximation can be overcome in an iterative approach. For the Stokes problem this results in the solution of the “simple” Molodenskii problem. Finally defining an error covariance model with a Krarup-type kernel first results were obtained for a posteriori variance-covariance and reliability analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号