首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV.  相似文献   

2.
By employing the CCM1(R15L12)long-range spectral model, study is undertaken of the effects of sea surface temperature anomaly(SSTA) for tropical Indian ocean on circulation transformation in the early summer in East Asia in 1991. The results indicate that warmer SSTA contributes to the increasing of the temperature over the Plateau in early summer, resulting in the intensification of tropical easterly jet on 100 hPa and northward shift of Northern Hemisphere subtropical westerly jet in May. It is obviously favorable for the subtropical high enhancement over western Pacific Ocean in May and subtropical westerly jet maintaining at 35~40 °N in June, making the Mei-Yu come earlier and stay over the Changjiang basin in 1991. Furthermore, warmer SSTA is also advantageous to averaged temperature rise in East Asia land region and Nanhai monsoon development. These roles are helpful in accelerating the seasonal transition for East Asia in early summer.  相似文献   

3.
包庆  Bin WANG  刘屹岷 《大气科学》2008,32(5):997-1005
20世纪50年代以来,随着全球海表面温度年代际变化和全球变暖现象的出现,东亚夏季风降水和环流场也出现相应的年代际变化。是什么原因引起这个长期的变化趋势?研究表明青藏高原增暖可能是导致东亚夏季风年代际变化的重要因子之一。为了能够更好地理解青藏高原地表状况对下游东亚季风的影响,作者使用德国马普气象研究所大气环流模式(ECHAM)进行一系列数值试验。在两组敏感性试验中,通过改变高原上的地表反照率从而达到改变地表温度的目的。数值试验结果表明:青藏高原增暖有助于增强对流层上层的南亚高压、高原北侧西风急流和高原南侧东风急流以及印度低空西南季风;与此同时,东亚地区低层西南气流水汽输送增强。高原增暖后降水场的变化表现为:印度西北部季风降水增加,长江中下游以及朝鲜半岛梅雨降水增多;在太平洋副热带高压控制下的西北太平洋地区和孟加拉湾东北部,季风降水减少。对数值模拟结果的初步诊断分析表明:在感热加热和对流引起的潜热加热相互作用下,南亚高压强度加强,东亚夏季低层西南季风增大、梅雨锋降水增强,高原东部对流层上层的副热带气旋性环流增加,以及对流层低层的西太平洋副热带高压增强。另外,在青藏高原增暖的背景下,孟加拉湾地区季风降水减弱。本项研究有助于更好地理解东亚夏季风年代际变化特征和未来气候变化趋势。  相似文献   

4.
利用改进的NCAR CCM3气候模式, 研究了1992年西北太平洋持续冷海温对东亚初夏季节大气环流的影响。西北太平洋冷海温不利于初夏东亚南支西风急流季节性北移, 引起亚洲东部沿海低槽明显加深, 东亚大槽平均高度场降低了4.66 dagpm, 从而也不利于西太平洋副热带高压的西伸加强。西北太平洋冷海温还不利于我国大陆初夏温度场回升, 特别是引起我国东北地区近地面温度下降2~5 ℃, 是影响东北冷夏现象的重要原因之一。模拟结果表明, 1992年初夏江淮入梅期较常年偏晚, 降水异常偏少, 与紧邻东亚大陆的西北太平洋持续冷海温有关。  相似文献   

5.
亚洲夏季风的年际和年代际变化及其未来预测   总被引:31,自引:12,他引:19  
本文是对我们近五年在亚洲夏季风年代际与年际变率及其未来预测方面研究的一个综述.主要包括下列三个问题:(1)根据123年中国夏季降水资料和印度学者的分析,检测出亚洲夏季风具有明显的年代际尺度减弱,这种年代际变化使中国东部(包括东亚)和南亚夏季降水的格局在过去60年中发生了明显变化.在东亚,从1970年代后期开始,主要异常雨带有不断南移的趋势,结果造成了南涝北旱的降水分布,这主要受到60~80年年代际振荡的影响.青藏高原前冬和春季积雪的年代际减少与热带中东太平洋海表温度的年代际增加是东亚降水型改变的主要原因,这是通过减弱亚洲地区夏季海陆温差与夏季风强度而实现的.未来亚洲夏季风的预测表明,东亚夏季风和南亚夏季风对气候变暖有十分不同的响应.东亚夏季风在本世纪将增强,雨带北推,尤其在2040年代之后;而南亚夏季风环流将继续减弱.这种不同的变化是由于两者对高低层海陆热力差异的不同响应造成.(2)年际尺度的变率在亚洲夏季风区主要表现为2年与4~7年的振荡.本文着重分析了2年振荡(TBO)形成的过程、机理及其对东亚降水的影响.对TBO-海洋机理进行了具体的改进,说明了东亚夏季风降水深受TBO影响的原因,尤其是阐明了长江型(YRV) TBO和淮河型(HRV) TBO的特征及其形成的循环过程.(3)在总结亚洲夏季风时期遥相关型的基础上,本文提出了季节内和年际尺度的低空遥相关型:即西北太平洋季风的遥相关型与印度“南支”和“北支”遥相关型.它们基本上反映了沿低空夏季风强风速带Rossby波群速度传播的结果.据此可以根据西北太平洋和印度夏季风的变化分别预测中国梅雨和华北雨季来临和降水异常.最后研究还表明,在本世纪亚洲夏季风可能更显著地受到人类活动造成的全球变暖的影响,未来的亚洲夏季风活动是人类排放的CO2引起的全球变暖与自然变化(海洋和陆面过程(积雪))共同作用的结果.  相似文献   

6.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

7.
东亚夏季风强弱年大气环流和热源异常对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
根据黄刚等定义的东亚夏季风指数, 对强、弱东亚夏季风年大气环流、大气热源和外强迫源SST的差异进行分析, 结果表明:强 (弱) 东亚夏季风年前期冬季到夏季, 太平洋SSTA为La Ni?a (El Ni?o) 型分布, 西太平洋暖池SST暖 (冷), 使得暖池附近对流活动较强 (较弱)。与此同时, 南亚大陆从印度半岛、青藏高原南部、中南半岛至华南大气异常加热 (变冷), 并且海陆热力对比加强 (减弱), 有利于出现强 (弱) 的东亚夏季风。此外, 由于暖池附近对流活动强 (弱), 该地区上升气流较强 (弱), Walker环流增强 (减弱), 当强 (弱) 的东亚夏季风向北推进时, 副热带西风急流北撤位置偏北 (南), 副热带高压位置也偏北 (南), 7月至8月华北 (江淮流域) 位于副热带西风急流南侧, 降水偏多, 江淮流域 (华北) 降水偏少。并给出与东亚夏季风年际变异有关的大气环流和SST异常的物理图像。  相似文献   

8.

Relations between Tibetan Plateau precipitation and large-scale climate indices are studied based on the Standardized Precipitation Index (SPI) and the boreal summer season. The focus is on the decadal variability of links between the large-scale circulation and the plateau drought and wetness. Analysis of teleconnectivity of the continental northern hemisphere standardized summer precipitation reveals the Tibetan Plateau as a major SPI teleconnectivity center in south-eastern Asia connecting remote correlation patterns over Eurasia. Employing a moving window approach, changes in covariability and synchronizations between Tibetan Plateau summer SPI and climate indices are analyzed on decadal time scales. Decadal variability in the relationships between Tibetan Plateau summer SPI and the large-scale climate system is characterized by three shifts related to changes in the North Atlantic, the Indian Ocean, and the tropical Pacific. Changes in the North Atlantic variability (North Atlantic Oscillation) result in a stable level of Tibetan Plateau summer SPI variability; the response to changes in tropical Pacific variability is prominent in various indices such as Asian monsoon, Pacific/North America, and East Atlantic/Western Russia pattern.

  相似文献   

9.
The authors present evidence to suggest that variations in the snow depth over the Tibetan Plateau (TP) are connected with changes of North Atlantic Oscillation (NAO) in winter (JFM). During the positive phase of NAO, the Asian subtropical westerly jet intensifies and the India-Myanmar trough deepens. Both of these processes enhance ascending motion over the TP. The intensified upward motion, together with strengthened southerlies upstream of the India-Myanmar trough, favors stronger snowfall over the TP, which is associated with East Asian tropospheric cooling in the subsequent late spring (April--May). Hence, the decadal increase of winter snow depth over the TP after the late 1970s is proposed to be an indicator of the connection between the enhanced winter NAO and late spring tropospheric cooling over East Asia.  相似文献   

10.
谢志昂  段安民 《大气科学》2017,41(4):811-830
通过多源资料诊断分析,本文讨论了盛夏(8月)青藏高原大气热源与菲律宾海对流活动之间的联系及可能的机制。结果表明,与青藏高原热源相联系的环流形势在夏季各月明显不同,因此对夏季青藏高原热源的影响应当分月讨论。在夏季各月中,菲律宾海对流活动与青藏高原热源在8月份的联系最为紧密,二者存在显著的反相关关系。而8月青藏高原热源、菲律宾对流活动、西太平洋副热带高压(简称西太副高)、印度季风低压、南亚高压、西风带槽脊和西北太平洋季风环流存在相互耦合的过程。青藏高原热源与菲律宾海对流活动之间联系的机制为:菲律宾海对流弱(强)年,西太副高偏西(东)偏南(北),西北太平洋季风环流减弱(加强),印度季风低压减弱(加强),西风带南压(北抬),又加之副高西侧有强(弱)的水汽输入,兼以高层南亚高压加强(减弱),使得高原南部降水显著增强(减弱),高原热源整体加强(减弱),高原热源的加强(减弱)又造成了高原南部到东亚区域低层西南(东北)风异常,又利于西太副高偏西(东)偏南(北),从而造成菲律宾海对流减弱(加强)。这一机制在高原热源强弱年均有表现,但强年表现得更为显著,并在个例中也有所体现,说明盛夏青藏高原热源异常和菲律宾海对流异常存在显著的相互作用。  相似文献   

11.
2015年我国东部夏季降水呈现南北反位相的空间分布,河套地区降水异常偏少、长江中下游地区降水异常偏多,同期印度中部地区降水负异常,上述三个区域2015年夏季降水距平百分率绝对值极大值均超过55%。东亚和南亚地区2015年夏季降水异常的形成机理主要是由于该年夏季处于El Niňo事件的发展位相,菲律宾群岛及邻近区域反气旋环流异常,江淮地区至日本列岛气旋式环流异常,对流层低层位势高度异常场和整层水汽异常输送场亦存在相一致的空间分布,表现为负位相的EAP(East Asian-Pacific)/PJ(Pacific-Japan)型遥相关,有利于河套地区降水偏少和长江流域降水偏多。热带太平洋海温异常引起热带地区Walker环流负异常,热带西太平洋地区上空受异常下沉气流控制,热带印度洋区域对流层盛行东风异常,减弱了印度夏季风,并造成了印度中部地区夏季降水偏少。另一方面,印度上空对流层低层受异常反气旋控制,该异常反气旋北侧的西风异常沿着青藏高原南麓向东运动,增强了与EAP/PJ型遥相关相联系的异常水汽输送,有利于维持和增强河套地区降水负异常和长江中下游地区降水正异常。  相似文献   

12.
青藏高原影响亚洲夏季气候研究的最新进展   总被引:40,自引:6,他引:40  
文中回顾了近 10a来吴国雄等在青藏高原影响亚洲夏季气候研究方面的最新进展。通过分析东西风交界面的演变证明 ,由于青藏高原的春季加热 ,亚洲季风区对流层低层冬季盛行偏东风转变为夏季偏西南风最早发生在孟加拉湾东部 ,与其相伴随的激烈对流降水出现在其东面。因此孟加拉湾东部至中印半岛西部是亚洲季风最早爆发的地区。同时也指出盛夏伊朗高原和青藏高原加热所激发的同相环流嵌套在欧亚大陆尺度的热力环流中 ,从而加强了东亚的夏季风 ,加剧了中西亚的干旱 ;并通过其所激发的波动对夏季东亚的气候格局产生重要影响。文中还比较了夏季南亚高压的伊朗模态和青藏模态性质的异同及其对亚洲夏季降水异常分布的不同影响。  相似文献   

13.
热带海表温度持续异常对东亚初夏大气环流的影响   总被引:3,自引:1,他引:3  
袁佳双  郑庆林 《气象》2005,31(12):10-17
利用NCEP/NCAR月平均海表温度及北半球大气环流分析资料,系统研究了热带海洋表面温度持续异常状况下东亚初夏(5、6月份)大气环流的异常特征.研究发现,暖海温年,南亚高压、西太平洋副热带高压明显偏强,冷海温年明显偏弱;暖海温年,欧亚大陆南支西风急流明显减弱北移,东亚大陆对流层低层温度偏高或接近常年,青藏高原近地面温度偏高,而冷海温年,东亚大陆对流层低层温度偏低,5月份青藏高原近地面温度偏低.研究表明,海表温度的持续异常对东亚初夏大气环流的季节转换有重要影响.  相似文献   

14.
青藏高原热力状况对东亚夏季副热带西风急流的影响   总被引:3,自引:0,他引:3  
利用1961--2004年NCEP/NCAR月平均温度5层和200hPa风场再分析格点资料,以及通过倒算法得到的热源资料,采用SVD方法研究了夏季东亚地区副热带西风急流与青藏高原平均温度场的耦合特征,考察了青藏高原热源及其与西太平洋热源差对夏季东亚副热带西风急流的影响。结果表明,夏季整个青藏高原特别是高原北部平均温度场与急流中心强度变化联系紧密,而高原东南部平均温度场主要体现了夏季西风急流位置纬向一致的南北移动;其次,夏季副热带西风急流的变化还与青藏高原西南部与菲律宾以东的西太平洋热源差变化有密切联系。  相似文献   

15.
In correspondence with the establishment of the "upper high and lower high" pressure pattern due to the activities of 500 hPa high over the Tibetan Plateau in summer,a series of changes of the East Asia atmospheric circulation will take place.In this paper,the distributions of divergence and vertical velocity of 500 hPa high,the evolutions of atmospheric heat source,the variations of vorticity and zonal wind at 100 hPa level and vertical meridional cell over the Tibetan Plateau etc.are statistically analyzed.Thus,we can see that the ascending motion and the convective heating over the Tibetan Plateau,the South Asia high and the westerly jet on the north of the Plateau at 100 hPa level are weakned.The northern branch and the southern branch of the easterly jet on the south of the Plateau merge into a single whole and situate on the south of the former northern branch.In the meantime,thermodynamic land-sea discrepancy in South Asia and the convective heating over the Bay of Bengal is enhanced.It will play an important role in the maintenance of the easterly jet and the South Asia monsoon.  相似文献   

16.
The characteristics of droughts and floods in China during the summers (May–August) of 2016 and 1998 were compared in great detail, together with the associated atmospheric circulations and external-forcing factors. Following results are obtained. (1) The precipitation was mostly above normal in China in summer 2016, with two main rainfall belts located in the Yangtze River valley (YRV) and North China. Compared with 1998, a similar rainfall belt was located over the YRV, with precipitation 100% and more above normal. However, the seasonal processes of Meiyu were different. A typical “Secondary Meiyu” occurred in 1998, whereas dry conditions dominated the YRV in 2016. (2) During May–July 2016, the Ural high was weaker than normal, but it was stronger than normal in 1998. This difference resulted from fairly different distributions of sea surface temperature anomalies (SSTAs) over the North Atlantic Ocean during the preceding winter and spring of the two years. (3) Nonetheless, tropical and subtropical circulation systems were much more similar in May–July of 2016 and 1998. The circulation systems in both years were characterized by a stronger than normal and more westward-extending western Pacific subtropical high (WPSH), a weaker than normal East Asian summer monsoon (EASM), and anomalous convergence of moisture flux in the mid and lower reaches of the YRV. These similar circulation anomalies were attributed to the similar tropical SSTA pattern in the preceding seasons, i.e., the super El Niño and strong warming in the tropical Indian Ocean. (4) Significant differences in the circulation pattern were observed in August between the two years. The WPSH broke up in August 2016, with its western part being combined with the continental high and persistently dominating eastern China. The EASM suddenly became stronger, and dry conditions prevailed in the YRV. On the contrary, the EASM was weaker in August 1998 and the “Secondary Meiyu” took place in the YRV. The Madden–Julian Oscillation (MJO) was extremely active in August 2016 and stayed in western Pacific for 25 days. It triggered frequent tropical cyclone activities and further influenced the significant turning of tropical and subtropical circulations in August 2016. In contrast, the MJO was active over the tropical Indian Ocean in August 1998, conducive to the maintenance of a strong WPSH. Alongside the above oceanic factors and atmospheric circulation anomalies, the thermal effect of snow cover over the Qinghai–Tibetan Plateau from the preceding winter to spring in 2016 was much weaker than that in 1998. This may explain the relatively stronger EASM and more abundant precipitation in North China in 2016 than those in 1998.  相似文献   

17.
2016年和1998年汛期降水特征及物理机制对比分析   总被引:12,自引:1,他引:11  
利用多种大气环流、海表温度、积雪面积等数据,并利用个例对比分析和统计方法,研究了2016年汛期(5-8月)中国旱、涝特征及与1998年的异同点,并对比分析了这两年导致降水异常的大气环流和外强迫因子。结果表明:(1)2016年汛期中国降水总体偏多,长江中下游和华北各有一支多雨带。与1998年相比,这两年南方多雨带均位于长江流域,梅雨雨量均较常年偏多1倍以上,但梅雨季节进程有显著差异,1998年发生典型的“二度梅”,而2016年梅雨结束后长江流域降水显著偏少,主要降水区移至北方。(2)2016年5-7月乌拉尔山高压脊明显偏弱,而1998年欧亚中高纬度呈“两脊一槽”型,这与北大西洋海温距平在这两年前冬至春季几乎完全相反的分布型密切相关。(3)这两年5-7月热带和副热带地区环流较为相似,副热带高压偏强、偏西,东亚夏季风偏弱,来自西北太平洋的水汽输送通量均在长江中下游形成异常辐合区,这主要是受到了前期相似的热带海温异常的影响,均为超强厄尔尼诺事件和热带印度洋全区一致偏暖模态。(4)这两年8月环流形势有显著差异,2016年8月副热带高压断裂,西段与大陆高压结合持续控制中国东部上空,夏季风迅速转强,长江流域高温少雨。而1998年8月夏季风进一步减弱,长江流域发生“二度梅”。2016年8月MJO异常活跃并长时间维持在西太平洋地区,激发频繁的热带气旋活动,对副热带地区大气环流的转折有重要作用。而1998年8月MJO主要活跃在印度洋地区,使得副高持续前期偏强的特征。除海洋和上述环流差异外,2016年前冬至春季青藏高原积雪的冷源热力效应远不及1998年强,这可能是导致2016年夏季风偏弱的程度不及1998年,而2016年汛期华北降水较1998年偏多的原因之一。   相似文献   

18.
The summer Asian–Pacific Oscillation(APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Climate Center Climate System Models(BCC CSMs) with different horizontal resolutions, i.e., BCC CSM1.1 and BCC CSM1.1(m), in reproducing APO interannual variability, APO-related precipitation anomalies, and associated atmospheric circulation anomalies, is evaluated.The results show that BCC CSM1.1(m) can successfully capture the interannual variability of the summer APO index. It is also more capable in reproducing the APO's spatial pattern, compared to BCC CSM1.1, due to its higher horizontal resolution. Associated with a positive APO index, the northward-shifted and intensified South Asian high, strengthened extratropical westerly jet, and tropical easterly jet in the upper troposphere, as well as the southwesterly monsoonal flow over North Africa and the Indian Ocean in the lower troposphere, are realistically represented by BCC CSM1.1(m), leading to an improvement in reproducing the increased precipitation over tropical North Africa, South Asia, and East Asia, as well as the decreased precipitation over subtropical North Africa, Japan, and North America. In contrast, these features are less consistent with observations when simulated by BCC CSM1.1. Regression analysis further indicates that surface temperature anomalies over the North Pacific and the southern and western flanks of the Tibetan Plateau are reasonably reproduced by BCC CSM1.1(m), which contributes to the substantial improvement in the simulation of the characteristics of summer APO compared to that of BCC CSM1.1.  相似文献   

19.
利用1980-2011年观测的降水和美国NCEP/NCAR大气再分析等资料,采用经验正交分解(EOF)和线性回归等统计方法,讨论了2011年发生在长江中下游地区春夏旱涝急转的成因。结果表明:该年1-5月持续的La Nina事件导致西北太平洋副热带高压位置位于125°E以东,西北太平洋副热带高压西北侧的西南风伴随的水汽通量无法达到长江流域,从而导致了2011年长江流域1-5月份的持续性干旱现象。伴随La Nina的减弱,6月份的青藏高原的感热明显增强,诱发西北太平洋副热带高压自东向西北方向移动到110°E,引导西南风水汽向长江流域输送,而青藏高原对流的加强和向东移动与来自西北太平洋副热带高压西北侧的西南气流在长江中下游地区的汇合导致了6月份长江中下游降水的急剧增加,从而形成了2011年长江中下游地区春夏季节的旱涝急转。  相似文献   

20.
A global atmospheric general circulation model has been used to perform eleven idealized numerical experiments, i.e., TP10, TP10, .., TP100, corresponding to different percentages of the Tibetan Plateau altitude. The aim is to explore the sensitivity of East Asian climate to the uplift and expansion of the Tibetan Plateau under the reconstructed boundary conditions for the mid-Pliocene about 3 Ma ago. When the plateau is progressively uplifted, global annual surface temperature is gradually declined and statistically significant cooling signals emerge only in the Northern Hemisphere, especially over and around the Tibetan Plateau, with larger magnitudes over land than over the oceans. On the contrary, annual surface temperature rises notably over Central Asia and most parts of Africa, as well as over northeasternmost Eurasia in the experiments TP60 to TP100. Meanwhile, the plateau uplift also leads to annual precipitation augmentation over the Tibetan Plateau but a reduction in northern Asia, the Indian Peninsula, much of Central Asia, parts of western Asia and the southern portions of northeastern Europe. Additionally, it is found that an East Asian summer monsoon system similar to that of the present initially exists in the TP60 and is gradually intensified with the continued plateau uplift. At 850 hPa the plateau uplift induces an anomalous cyclonic circulation around the Tibetan Plateau in summertime and two anomalous westerly currents respectively located to the south and north of the Tibetan Plateau in wintertime. In the mid-troposphere, similarto-modern spatial pattern of summertime western North Pacific subtropical high is only exhibited in the experiments TP60 to TP100, and the East Asian trough is steadily deepened in response to the progressive uplift and expansion of the Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号