首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Apparent fracture toughness in Mode I of microcracking materials such as rocks under confining pressure is analyzed based on a cohesive crack model. In rocks, the apparent fracture toughness for crack propagation varies with the confining pressure. This study provides analytical solutions for the apparent fracture toughness using a cohesive crack model, which is a model for the fracture process zone. The problem analyzed in this study is a fluid-driven fracture of a two-dimensional crack with a cohesive zone under confining pressure. The size of the cohesive zone is assumed to be negligibly small in comparison to the crack length. The analyses are performed for two types of cohesive stress distribution, namely the constant cohesive stress (Dugdale model) and the linearly decreasing cohesive stress. Furthermore, the problem for a more general cohesive stress distribution is analyzed based on the fracture energy concept. The analytical solutions are confirmed by comparing them with the results of numerical computations performed using the body force method. The analytical solution suggests a substantial increase in the apparent fracture toughness due to increased confining pressures, even if the size of the fracture process zone is small.  相似文献   

2.
This paper discusses the applicability of the tension-softening model in the determination of the fracture toughness of rocks, where the fracture toughness evaluated based on the tension-softening model is compared with the crack growth resistance deduced from laboratory-scale hydraulic fracturing tests. It is generally accepted that the fracture process is dominated by the growth of a fracture process zone for most types of rocks. In this study, the J-integral based technique is employed to determine the fracture toughness of Iidate granite on the basis of the tension-softening model, where compact tension specimens of different dimensions were tested in order to examine the specimen size effect on the measured fracture toughness. It was shown that the tension-softening relation deduced from the J-integral based technique allowed us to determine the specimen size independent fracture toughness Kc of Iidate granite. Laboratory-scale hydraulic fracturing tests were performed on cubic specimens (up to a 10 m sized specimen), where cyclic pressurization was conducted using a rubber-made straddle packer to observe the extent of the hydraulically induced crack. The experimental results of pressure and crack length were then used to construct the crack growth resistance curve based on the stress intensity factor K. The crack growth resistance obtained from the hydraulic fracturing tests was observed to initially increase and then level off, giving a constant K value for a long crack extension stage. The plateau K value in the crack growth resistance curve was found to be in reasonable agreement with the fracture toughness Kc deduced from the tension-softening relation. It was demonstrated that the tension-softening model provides a useful tool to determine the appropriate fracture toughness of rocks, which may be applicable for the analysis of the process of large-scale crack extension in rock masses.  相似文献   

3.
理论研究[1]表明,环境水介质的动态对岩石中裂缝的应力腐蚀过程有很大的影响。但迄今为止,岩石的应力腐蚀实验都是在水介质静止情况下作的。本实验对比研究了蒸馏水静止和流动情况下云南大理岩试件应力腐蚀引起的亚临界裂缝扩展特征。结果表明,裂缝周围水介质的流动会加速裂缝端部的应力腐蚀过程,这对于震源过程及临震前兆的研究可能有重要意义。样品采用紧凑拉伸试件,同时测量了断裂韧性K_(Ic)=(1.41±0.013)kg·mm~((-3)/2),并对人工狭窄锯口与天然初始裂缝的试件进行了对比测量,认为对于云南大理岩的紧凑拉伸试件可以用人工狭窄锯口代替天然初始裂缝。  相似文献   

4.
临潼—长安断裂带构造形变   总被引:3,自引:0,他引:3  
赵振才  祝意青 《内陆地震》1989,3(4):362-367
本文在对临潼—长安断裂带挽近构造特点进行分析研究的基础上,重点分析了其垂直形变监测资料,指出它是一条可以提供前兆性信息的敏感性断裂,其主次断裂带具有对称活动的特点,其中主断裂,特别是其北段尤为活跃,应重点监测。断裂带形变趋势表明,其形变尚处于稳态阶段,近年内不会发生大震。  相似文献   

5.
New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a `slow' constant strain rate of 2.5 × 10−6 /s) and an unstable fracture that develops near instantaneously (loaded at a `fast' constant strain rate of 5 × 10−5 /s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ~ 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ~ 18 mm/s, and (3) unstable, accelerating propagation. In the ~ 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation.  相似文献   

6.
The double torsion testing method has been used to determine catastrophic and subcritical crack propagation parameters for pre-cracked specimens of Westerly granite and Black gabbro under a number of environmental conditions.The critical stress intensity factor for catastrophic crack propagation (fracture toughness) of granite and gabbro has been measured at temperatures from 20 to 400°C, in a vacuum. At 20°C, the fracture toughness of Westerly granite was 1.79 ± 0.02 MPa · m12, and for two blocks of Black gabbro it was 3.03 ± 0.08 MPa · m12 and 2.71 ± 0.15 MPa ·m12, respectively. These values are very close to those reported by other investigators for tests conducted in air of ambient humidity at room temperature. For both rocks, fracture toughness at first increased slightly, and then decreased steadily on raising the temperature above ambient conditions. This behaviour is explained in terms of the density and distribution of thermally induced microcracks, as determined by quantitative optical microscopy.Subcritical crack growth behaviour has been studied at temperatures up to 300°C, and under water vapour at pressures of 0.6 to 15 kPa. Both the load relaxation and incremental constant displacement rate forms of the double torsion testing method were utilised to generate stress intensity factor/crack velocity diagrams. Crack growth was measured over the velocity range 5 × 10?3 to 10?7 m · s?1. Increasing both temperature and water vapour pressure resulted in substantially higher crack growth rates. The overall effect of raising the temperature over the range studied here (20–300°C) was to increase the crack growth rate in granite and gabbro by ~5 and 7 orders of magnitude, respectively, at constant stress intensity factor and vapour pressure of water. For both rocks, the slopes of stress intensity factor/crack velocity curves were sensitive to changes in both temperature and water vapour pressure at low values of the latter parameter. Slopes fell substantially on raising the water vapour pressure, but were relatively insensitive to changes in temperature at these higher pressures. No subcritical crack growth limit was encountered.Estimates of the uncertainty in our experimental data are given. From the results of multiple load relaxation experiments on Westerly granite specimens, we estimate the uncertainty in position of stress intensity factor/crack velocity curves along the stress intensity axis to be c. 10% of the fracture toughness, and the uncertainty in slope of such curves to be c. 12%.Problems associated with the extrapolation of our experimental data to regions of higher effective confining pressure in the Earth's crust are discussed.  相似文献   

7.
Based on the phenomena that the deformation gap was observed before the great Tangshang earthquake, this paper discusses the strain gap according to test and theory. The (strain) patterns were recorded photographically by realtime holographic interferometry and shadow optical method of caustics, as soon as the loading process started. In the meantime, the AE (acoustic emission) signals were recorded by a micro crack information storage-analysis system. According to damage theory and location of micro fracture, we have studied the stain gap and gained: a) It is necessary that strain gap appears under the condition of linear elasticity theory, and its situation is relatively stable, corresponding to stress concentration. b) Micro fractures, which appear initially at area of high stress, occur rarely at the strain gap, and their locations are finally in the zone between the stress concentration area and the strain gap, which indicate the clusters or groups. However, the major macro fracture (final rupture) started from the shadow areas, and then grew quickly towards the strain gaps, which resulted in failure of sample. Foundation item: The Dual Project of China Seismological Bureau (9691309020301), the Specialized Funds for National Key Basic Study (G1998040704), the project for the MOST under contract (2001BA601B02) and Youth Funds for applied basic study of the Science and Technology Bureau of Yunnan Province (98D019Q).  相似文献   

8.
The emplacement conditions for 39 igneous dikes cutting basalts in northwestern Ethiopia are evaluated by analyzing their displacement–length scaling relations. Maximum opening displacements and lengths of the dikes demonstrate displacement–length scaling of the form Dmax = 0.088L0.48, consistent with other populations of dikes and veins and different than the power-law scaling relation typically found for faults. The dikes propagated through the thin Trap basalt sequence under conditions of constant fracture toughness, with values corrected for three-dimensional dike geometry of ~ 77–273 MPa m1/2. The large values of fracture toughness are likely associated with (1) the toughening effects of near-tip damage, (2) mixed-mode dike propagation, as shown by magma flow fabric analysis through anisotropy of magnetic susceptibility (AMS) and image analysis of thin sections, and (3) elevated temperature within the blocky and ductile basaltic host rock, evidence of which has been found in the field.  相似文献   

9.
从断裂力学观点探讨 b 值的物理实质   总被引:5,自引:1,他引:5       下载免费PDF全文
尹祥础  李世愚  李红  王敏 《地震学报》1987,9(4):364-374
岩石试验声发射及天然地震的 b 值到底反映了什么样的物理实质,是一个长期以来引起争论的问题.本文运用断裂力学的观点和方法,研究岩石试验试件内微裂纹系中各裂纹的扩展顺序及声发射能量,由此确定整个声发射序列,并进而确定 b 值.如果假设裂纹长度的分布密度函数为 p()=B-.经过力学分析和数学推导,可得到关系式 b=3/2.由此看出:b 值的物理实质是,它反映了介质的断裂构造状态————包括介质中裂纹系的空间分布及其它影响材料中裂纹扩展的物理量(如断裂韧度、摩擦系数等)的空间分布.这一结论与大多数实验及观测结果相符.我们的研究结果与茂木清夫观点有共同之处.茂木清夫认为:介质的不均匀性是决定 b 值的重要因素.介质的不均匀性一词固然也包括了介质的断裂构造状态在内,但是本文之观点比茂木更进一步说明了问题的实质.   相似文献   

10.
Introduction ZHOU, et al (1994) collected and investigated periods of level deformation data from 1954 to 1992, and gained sequence of a picture per year (or several years) that vividly showed the varia-tion of the deformation field of Tangshan earthquake source area around the Tangshan diamond block which was 21.3. They indicated that the Tangshan earthquake source area showed de-formation gap and the hard solid characteristic of relative stabilization or relative closedown. In the investig…  相似文献   

11.
Experimental study of ultralong wave band for electro-magnetic signals and acoustic emission during rock fracture(曹惠馨)(钱书清)(吕...  相似文献   

12.
The previously developed two-dimensional boundary element procedure for analysing the propagation of a single discrete crack is extended to simultaneous multiple cracking in concrete gravity dams. A brief discussion of the generalized methodology is presented and the validity of the extended procedure is verified by performing a fracture analysis of the Fongman dam and comparing the predicted rupture process with the available experimental results. The fracture response of the Koyna dam is then studied extensively under the Koyna earthquake. Both single and multiple cracking models are employed to investigate the fracture process as well as final rupture in the dam. Similar final damage involving complete separation of the crest block of the dam is predicted, irrespective of whether single or multiple crack propagation models are employed. In relation to the phenomenon of hydrodynamic uplift pressure within propagating cracks, openings of the crack on the upstream face of the dam are examined in particular. The results indicate that this phenomenon is not expected to be significant during the crack development phase, and hence unlikely to affect the final rupture characteristics of dams undergoing strong earthquake excitation.  相似文献   

13.
We investigated initiation and propagation of compaction bands (CB) in six wet and four dry Bentheim sandstone samples deformed in axial compression tests with strain rates ranging from 3.2 × 10?8 s?1 to 3.2 × 10?4 s?1. Circumferential notches with 0.8-mm width and 5-mm depth served to initiate CB at mid-sample length. Wet samples were saturated with distilled water and deformed at 195 MPa confining pressure and 10 MPa pore pressure. Dry samples were deformed at 185 MPa confining pressure. Twelve P-wave sensors, eight S-wave sensors and two pairs of orthogonally oriented strain-gages were glued to the sample surface to monitor acoustic emission (AE), velocities and local strain during the loading process. Nucleation of compaction bands is indicated by AE clusters close to the notch tips. With progressive loading, AE activity increased and AE hypocenters indicated propagation of a single CB normal to the sample axis. CB propagation from the sample periphery towards the centre was monitored. Microstructural analysis of deformed samples shows excellent agreement between location of AE clusters and CBs. In both dry and wet samples the lateral propagation of CBs was about 100 times faster than axial shortening rates. At the slowest displacement rate, AE activity during band propagation was reduced and CB nucleation in wet samples occurred at 20% lower stresses. This may indicate an increasing contribution of stress corrosion processes to the formation of the compaction bands. In dry and wet samples inelastic compaction energy per area ranged between 16 and 80 kJ m?2. This is in good agreement with previous estimates from laboratory and field studies.  相似文献   

14.
Fracture phenomena in rocks are associated with mainly mode I crack growth, sometimes superposed by shear or torsion. The present paper contributes to a fracture mechanics analysis of mode I and mixed mode crack propagation, by presenting reliable fracture toughness data for some rocks which include the effect of induced crack propagation rate, and the influence of effective pressure, and by numerical calculations on fracture propagation in layered rock formations. Empirical relations between fracture toughness,K Ic' and induced crack opening displacement rate, as well as effective pressure, are given. The observedK Ic pressure relation supports a theoretical model which takes into account the existence of microcracks in the crack tip region. Finite element calculations of fracture propagation in layered rock formations demonstrate the important effect of mixed mode crack growth. The numerical approach is particularly applied to single crack growth in hydraulic fracturing and in three point bending tests on layered single edge crack specimens.  相似文献   

15.
唐杰  吴国忱 《地球物理学报》2015,58(8):2986-2995
本文在实验室对所获取的东营地区层理发育的低孔隙度页岩和泥岩的各向异性裂纹演化特性进行了研究,获得了各向同性条件下泥页岩的力学与超声波响应特性,分析了应力幅度对于页岩声波速度和各向异性的影响.主要结论包括:(1)泥页岩在循环载荷下存在滞后效应,表明其经历了去压实或油气产生导致的超压;(2)泥岩和页岩具有不同程度的各向异性,随着各向同性压力的增高微裂隙逐渐闭合,样品的各向异性程度减弱;(3)分析了岩石韧度和裂纹损伤参数随压力的变化特征,相比泥岩,页岩各向异性程度更高,随压力变化更明显,其裂纹导致的附加各向异性更强;(4)分析了各向异性岩石的动态弹性模量特征,由于软裂隙空间的闭合,动态弹性模量在低压条件下都随着围压的增加有硬化趋势.  相似文献   

16.
混凝土坝的劈头裂缝属于断裂力学中描述的张开型(I型)裂缝。劈头裂缝应力计算中,强度因子KI和材料开裂韧度KIC是判断劈头裂缝扩展的关键参数。采用断裂力学的基本理论推导裂缝应力计算的基本公式,并借助有限元来确定强度因子和材料开裂韧度,对寒冷地区实际工程坝体裂缝进行计算,得出运行期4日型寒潮期和不同运行时段的温度裂缝长度和强度因子。通过对比发现,计算结果与大坝运行期不同工况裂缝的实际情况相符合,验证了方法的正确性。  相似文献   

17.
The topography of laboratory induced shear fracture surfaces of Westerly granite was studied. Three types of fracture surfaces were examined: (1) a fresh fracture from the shear failure of an intact sample under polyaxial loading (2 = 40 MPa > 3 = 15 MPa); (2) a shear fracture subjected to frictional sliding of 100 m under polyaxial loading; (3) a shear fracture subjected to frictional sliding of 800 m under conventional triaxial loading (1 > 2 = 3 = 40 MPa). Both sliding distances are within the range of the grain size of Westerly granite. The results are represented by a power spectral method.Similar to the power spectra from natural rock surfaces, the power spectra of the induced shear fracture surfaces fall off about 2 orders of magnitude per decade increase in spatial frequency. No corner frequency exists in the power spectra over a spatial frequency range from that corresponding to the profile length to the Nyquist frequency. A slope break in the power spectrum was identified, however. It separates a steeper low frequency segment from a less steep high frequency segment. The spatial frequency at the slope break corresponds to a wavelength of several hundred microns which is on the scale of the microcracking and contact breaking on the fractures. Upon re-examining power spectra of natural fault traces and fault surfaces obtained in previous studies, we noted similar slope breaks. We suggest that this slope break may have significant implications in the scaling problem. Both the induced fracture surfaces and natural faults exhibit topographic characteristics different from those of sawcut surfaces, which have been widely used in laboratory rock friction experiments. In the present study, we observed that even a small amount of sliding (less than a grain size) already results in significant mismatches between the paired sliding surfaces in the direction normal to sliding.  相似文献   

18.
19.
Magmas are transported through pre-existing fractures in many repeatedly erupting volcanoes. The study of this special process of magma transport is fundamentally important to understand the mechanisms and conditions of volcanic eruptions. In this paper, we numerically simulate the magma propagation process through a pre-existing vertical fracture in the crust by using the combined finite difference method (FDM), finite element method (FEM) and discontinuous deformation analysis (DDA) approach. FDM is used to analyze magma flow in the pre-existing fracture, FEM is used to calculate the opening of the fracture during magma intrusion, and DDA is used to deal with the contact of the closed fracture surfaces. Both two-dimensional (2D) and three-dimensional (3D) examples are presented. Parametric studies are carried out to investigate the influence of various physical and geometric parameters on the magma transport in the pre-existing fracture. We have considered magma chamber depth ranging from 7 km to 10 km under the crust surface, magma viscosity ranging from 2 × 10−2 to 2 × 10−7 MPa s, and the density difference between the magma and host rock ranging from 300 to 700 kg/m3. The numerical results indicate that (1) the fluid pressure p varies gradually along the depth, (2) the shape of the magma body during propagation is like a torch bar and its width ranges from 2 m to 4 m approximately in the 3D case and 10 m to 50 m in the 2D case for the same physical parameters used, (3) the crust surface around the pre-existing fracture begins to increase on both sides of the fracture, forms a trough between them, then gradually uplifts during the transport of the magma, and finally takes the shape of a crater when the magma reaches the surface. We have also examined the influence of physical and geometric parameters on the minimum overpressure for magma transport in the 3D case. The numerical results show that our numerical technique presented in this paper is an effective tool for simulating magma transport process through pre-existing fractures in the crust.  相似文献   

20.
Along both sides of the Tancheng-Lujiang Fracture Zone in eastern China, a series of mantle source gas pools constitute a massive-scale tectonic accumulation zone in NNE direction, with the mantle geochemical characteristics of high concentrations of C02 and He, high3He/4He-40Ar/36Ar ratio system and high δ13Coo2 ratios (the main frequency, -3.4%— 4.6%), showing no difference from the tectonic framework of the area. In the area, the tectonic environment is a rift formed as a result of diapiric mantle injection and crust thinning to form graben-type basins and lithospheric fractures. The mantle-derived volcanic rocks and inclusions are well-developed and a high geothermal zone (mantlesource) exists in the area. The characteristics of the three components (solid, liquid and gas) of mantle, concentrated all over the same tectonic space zone, show that the rift system is of a good tectonic environment or passage for mantle degassing and gas migration. The main types of the gas pools are volcano, fault-block, anticline, buried hill and so on, but most of them are combination traps closely related with fracture. For the mantle source gas pools, rift is an optimum tectonic region, and nearby lithospheric fracture, mantle source volcanic rocks or basement uplifts are a favourable structural location when reservoir-caprock association develops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号