首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-consistent balanced pulsar magnetosphere of a magnetic neutron star with aligned magnetic and rotational axes is considered. It is shown that the magnetosphere consists of electron polar caps separated by empty space from a positron equatorial belt. The shape of the cold polar caps at a large distance from the star is calculated. It is shown that the cap shape at a large distance is independent of the magnetospheric structure near the neutron star. The shape of the equatorial belt is calculated. It is shown that a part of the equatorial belt rotates differentially, and its angular velocity is larger than that of the star (superrotation). It is shown that under certain conditions the space charge density of the belt can be very large. In principle, the formation of a surface charge placed in vacuum on a magnetic surface is possible. Magnetospheric vibrations are considered. A connection is established between drifting subpulses and the equatorial belt superrotation and also between drifting subpulses and cap vibrations. The characteristic frequency of vibrations and the angular velocity of superrotation are estimated.  相似文献   

2.
The case of an aligned rotator magnetosphere is considered. Provided the ions ejection from the neutron stellar surface is absent, the pulsar magnetosphere consists of two polar electron caps. The upper parts of the caps are unstable. Electrons precipitate from these parts, fall onto the star and are accelerated to Lorentz-factor 106–107. Electrons radiate -quanta in the direction of the star. These -quanta are converted into electron-positron pairs. The region of size, about 10 stellar radii, around the star appears to be filled with electron-positron plasma. The inflow of electron-positron plasma interacts with the electron gas of the polar cap. For this reason longitudinal plasma vibrations arise, and bunched outflows of electron-positron plasma appear.  相似文献   

3.
It is shown that the radius of curvature of magnetic field lines in the polar region of a rotating magnetized neutron star can be significantly less than the usual radius of curvature of the dipole magnetic field. The magnetic field in the polar cap is distorted by toroidal electric currents flowing in the neutron star crust. These currents close up the magnetospheric currents driven by the electron–positron plasma generation process in the pulsar magnetosphere. Owing to the decrease in the radius of curvature, electron–positron plasma generation becomes possible even for slowly rotating neutron stars, with   PB −2/312 < 10 s  , where P is the period of star rotation and   B 12= B /1012 G  is the magnitude of the magnetic field on the star surface.  相似文献   

4.
Plasma magnetosphere surrounding rotating magnetized neutron star in the braneworld has been studied. For the simplicity of calculations Goldreich-Julian charge density is analyzed for the aligned neutron star with zero inclination between magnetic field and rotation axis. From the system of Maxwell equations in spacetime of slowly rotating star in braneworld, second-order differential equation for electrostatic potential is derived. Analytical solution of this equation indicates the general relativistic modification of an accelerating electric field and charge density along the open field lines by brane tension. The implication of this effect to the magnetospheric energy loss problem is underlined. It was found that for initially zero potential and field on the surface of a neutron star, the amplitude of the plasma mode created by Goldreich-Julian charge density will increase in the presence of the negative brane charge. Finally we derive the equations of motion of test particles in magnetosphere of slowly rotating star in the braneworld. Then we analyze particle motion in the polar cap and show that brane tension can significantly change conditions for particle acceleration in the polar cap region of the neutron star.  相似文献   

5.
Observed hot spots on neutron stars are often associated with polar caps heated by the backflow of energetic electrons or positrons from accelerators on bundles of open magnetic field lines. Three effects are discussed that may be relevant to formation of hot spots and their areas. (1) The area of a polar cap is proportional to the ratio of the star’s surface dipole field to the local field at the polar cap. Because the field is coupled to the evolving spin of the superfluid core of the star, this ratio can depend on the stellar spin and its history. (2) The hot emission area may appear smaller to a distant observer when emitted X-rays propagate through electron-positron plasma created in the magnetosphere. The X-rays then change their energy spectrum because of cyclotron resonant scattering by pairs. (3) Hot spots may form on the star’s surface as a result of crust motions that are driven by the pull of core flux tubes pinned to the crust. Such motions twist the footprints of closed magnetic loops of the magnetosphere and induce an electric current in the loop, which will heat those footprints.  相似文献   

6.
Just as a rotating magnetized neutron star has material pulled away from its surface to populate a magnetosphere, a similar process can occur as a result of neutron-star pulsations rather than rotation. This is of interest in connection with the overall study of neutron star oscillation modes but with a particular focus on the situation for magnetars. Following a previous Newtonian analysis of the production of a force-free magnetosphere in this way Timokhin et al., we present here a corresponding general-relativistic analysis. We give a derivation of the general relativistic Maxwell equations for small-amplitude arbitrary oscillations of a non-rotating neutron star with a generic magnetic field and show that these can be solved analytically under the assumption of low current density in the magnetosphere. We apply our formalism to toroidal oscillations of a neutron star with a dipole magnetic field and find that the low current density approximation is valid for at least half of the oscillation modes, similarly to the Newtonian case. Using an improved formula for the determination of the last closed field line, we calculate the energy losses resulting from toroidal stellar oscillations for all of the modes for which the size of the polar cap is small. We find that general relativistic effects lead to shrinking of the size of the polar cap and an increase in the energy density of the outflowing plasma. These effects act in opposite directions but the net result is that the energy loss from the neutron star is significantly smaller than suggested by the Newtonian treatment.  相似文献   

7.
Magnetar corona     
Persistent high-energy emission of magnetars is produced by a plasma corona around the neutron star, with total energy output of ~1036 erg/s. The corona forms as a result of sporadic starquakes that twist the external magnetic field of the star and induce electric currents in the closed magnetosphere. Once twisted, the magnetosphere cannot untwist immediately because of its self-induction. The self-induction electric field lifts particles from the stellar surface, accelerates them, and initiates avalanches of pair creation in the magnetosphere. The created plasma corona maintains the electric current demanded by curl B and regulates the self-induction e.m.f. by screening. This corona persists in dynamic equilibrium: it is continually lost to the stellar surface on the light-crossing time ~10?4 s and replenished with new particles. In essence, the twisted magnetosphere acts as an accelerator that converts the toroidal field energy to particle kinetic energy. The voltage along the magnetic field lines is maintained near threshold for ignition of pair production, in the regime of self-organized criticality. The voltage is found to be about ~1 GeV which is in agreement with the observed dissipation rate ~1036 erg/s. The coronal particles impact the solid crust, knock out protons, and regulate the column density of the hydrostatic atmosphere of the star. The transition layer between the atmosphere and the corona is the likely source of the observed 100 keV emission. The corona also emits curvature radiation up to 1014 Hz and can supply the observed IR-optical luminosity.  相似文献   

8.
The point X-ray source 1E 161348-5055 is observed to display pulsations with the period 6.67?hr and $|\dot{P}| \leq1.6 \times10^{-9}\,{\rm s\,s^{-1}}$ . It is associated with the supernova remnant RCW?103 and is widely believed to be a ~2000?yr old neutron star. Observations give no evidence for the star to be a member of a binary system. Nevertheless, it resembles an accretion-powered pulsar with the magnetospheric radius ~3000?km and the mass-accretion rate $\sim 10^{14}\,{\rm g\,s^{-1}}$ . This situation could be described in terms of accretion from a (residual) fossil disk established from the material falling back towards the star after its birth. However, current fall-back accretion scenarios encounter major difficulties explaining an extremely long spin period of the young neutron star. We show that the problems can be avoided if the accreting material is magnetized. The star in this case is surrounded by a fossil magnetic slab in which the material is confined by the magnetic field of the accretion flow itself. We find that the surface magnetic field of the neutron star within this scenario is ~1012?G and that a presence of $\gtrsim10^{-7}\,{\rm M_{\odot}}$ magnetic slab would be sufficient to explain the origin and current state of the pulsar.  相似文献   

9.
Strong (B?109 G) and superstrong (B?1014 G) magnetic fields profoundly affect many thermodynamic and kinetic characteristics of dense plasmas in neutron star envelopes. In particular, they produce strongly anisotropic thermal conductivity in the neutron star crust and modify the equation of state and radiative opacities in the atmosphere, which are major ingredients of the cooling theory and spectral atmosphere models. As a result, both the radiation spectrum and the thermal luminosity of a neutron star can be affected by the magnetic field. We briefly review these effects and demonstrate the influence of magnetic field strength on the thermal structure of an isolated neutron star, putting emphasis on the differences brought about by the superstrong fields and high temperatures of magnetars. For the latter objects, it is important to take proper account of a combined effect of the magnetic field on thermal conduction and neutrino emission at densities ρ?1010 g?cm?3. We show that the neutrino emission puts a B-dependent upper limit on the effective surface temperature of a cooling neutron star.  相似文献   

10.
The X-ray luminosity and temperature of the polar cap heated by the back flux of positrons from a radio pulsar with a period P ~ 1 s and a magnetic field B ~ 1012 G have been estimated. An additional source of X-ray emission—a thin, hotter semiring on the polar-cap periphery—is shown to also exist. It is heated by the back flux of electrons from the light cylinder. Furthermore, the electric field near the hot semiring accelerates the ions of the surface layer that leave the neutron-star magnetosphere. The semiring area is smaller than the polar-cap area approximately by a factor of 100, i.e., at the same luminosity the temperature is higher by a factor of 3. The observed X-ray emission from old radio pulsars is the emission from thin hot polar-cap semirings. The emission from the polar caps themselves is strongly attenuated by interstellar absorption.  相似文献   

11.
We develop a numerical code for simulating the magnetospheres of millisecond pulsars, which are expected to have unscreened electric potentials due to the lack of magnetic pair production. We incorporate General Relativistic (GR) expressions for the electric field and charge density and include curvature radiation (CR) due to primary electrons accelerated above the stellar surface, whereas inverse Compton scattering (ICS) of thermal X-ray photons by these electrons are neglected as a second-order effect. We apply the model to PSR J0437-4715, a prime candidate for testing the GR-Electrodynamic theory, and find that the curvature radiation spectrum cuts off at energies below 15 GeV, which are well below the threshold of the H.E.S.S. telescope, whereas Classical Electrodynamics predict a much higher cutoff near 100 GeV, which should be visible for H.E.S.S., if standard assumed Classical Electrodynamics apply. GR theory also predicts a relatively narrow pulse (2φ L ∼ 0.2 phase width) centered on the magnetic axis, which sets the beaming solid angle to ∼0.5 sr per polar cap (PC) for a magnetic inclination angle of 35 relative to the spin axis, given an observer which sweeps close to the magnetic axis. We also find that EGRET observations above 100 MeV of this pulsar constrain the polar magnetic field strength to B pc < 4× 108 G for a pulsar radius of 10 km and moment of inertia of 1045 g cm2. The field strength constraint becomes even tighter for a larger radius and moment of inertia. Furthermore, a reanalysis of the full EGRET data set of this pulsar, assuming the predicted pulse shape and position, should lead to even tighter constraints on neutron star and GR parameters, up to the point where the GR-derived potential and polar cap current may be questioned.  相似文献   

12.
Pulsar “standard model”, that considers a pulsar as a rotating magnetized conducting sphere surrounded by plasma, is generalized to the case of oscillating star. We developed an algorithm for calculation of the Goldreich-Julian charge density for this case. We consider distortion of the accelerating zone in the polar cap of pulsar by neutron star oscillations. It is shown that for oscillation modes with high harmonic numbers (l,m) changes in the Goldreich-Julian charge density caused by pulsations of neutron star could lead to significant altering of an accelerating electric field in the polar cap of pulsar. In the moderately optimistic scenario, that assumes excitation of the neutron star oscillations by glitches, it could be possible to detect altering of the pulsar radioemission due to modulation of the accelerating field. This work was partially supported by RFBR grant 04-02-16720, and by the grants N.Sh.-5218.2006.2 and RNP-2.1.1.5940.  相似文献   

13.
At present, it is widely believed that anomalous X-ray pulsars (AXPs), soft gamma-ray repeaters (SGRs), rotational radio transients (RRATs), compact central objects (CCOs) in supernova remnants, and X-ray dim isolated neutron stars (XDINSs) belong to different classes of anomalous objects in which the central bodies are isolated neutron stars. Previously, we have shown that AXPs and SGRs can be described in terms of the drift model for parameters of the central neutron star typical of radio pulsars (rotation periods P ~ 0.1–1 s and surface magnetic fields B ~ 1011–1013 G). Here, we show that some of the peculiarities of the sources under consideration can be explained by their geometry (in particular, by the angle β between the rotation axis and the magnetic moment). If β ? 10° (an aligned rotator), the drift waves in the outer layers of the neutron star magnetosphere can account for the observed periodicity in the radiation. For large β (a nearly orthogonal rotator), the observed modulation of the radiation and its short bursts can be explained by mass accretion from the ambient medium (e.g., a relic disk).  相似文献   

14.
The electromagnetic field in a magnetized neutron star and the underlying volume charges and currents are found. A general case of a rigidly rotating neutron star with infinite conductivity, arbitrary distribution of the internal magnetic field, arbitrarily changing angular velocity, and arbitrary surface velocity less than the velocity of light is considered. Quaternions are used to describe rotation and determine the magnetic field. It is shown that the charge density is not equal to and can exceed significantly the common Goldreich–Julian density. Moreover, corrections to the magnetic field due to stellar rotation are zero. For a rotating neutron star, twisting magnetic field lines causes charge accumulation and current flows. This fact shows a possible link between changing internal magnetic field topology and observed activity of neutron stars.  相似文献   

15.
The strength of the Sun's polar fields   总被引:3,自引:0,他引:3  
The magnetic field strength within the polar caps of the Sun is an important parameter for both the solar activity cycle and for our understanding of the interplanetary magnetic field. Measurements of the line-of-sight component of the magnetic field generally yield 0.1 to 0.2 mT near times of sunspot minimum. In this paper we report measurements of the polar fields made at the Stanford Solar Observatory using the Fe i line 525.02 nm. We find that the average flux density poleward of 55° latitude is about 0.6 mT peaking to more than 1 mT at the pole and decreasing to 0.2 mT at the polar cap boundary. The total open flux through either polar cap thus becomes about 3 × 1014 Wb. We also show that observed magnetic field strengths vary as the line-of-sight component of nearly radial fields.  相似文献   

16.
The formation of chemical elements in the envelopes of neutron stars is considered at the densities ?=107 to 1013 g cm?3. It is shown, that the compression of cold and hot matter leads to different chemical compositions. The compression of cold matter is accompanied by a decrease of atomic weightA, up to ?≈3×1012 g cm?3. One may distinguish the following stages during the compression of hot matter: quasi-equilibrium, when there exists both nuclear equilibrium and kinetic equilibrium in β-processes; and limited equilibrium, when the total number of nuclei is constant. It is shown that a nonequilibrium chemical composition may be formed in the envelopes of neutron stars where there is an excess of neutrons in the presence of superheavy nuclei. The nuclear energy, stored in the neutron star envelope may be sufficient to support neutron star luminosity at a level of ~ 1036 erg s?1 over a period of ~ 105 yr. Possible applications to the problem of X-ray sources and pulsars are discussed. The formation of the heavy nuclei in Supernovae explosions is considered briefly. Rough estimates are made for the differences in chemical composition of ejected matter during the explosions of stars of different masses and Supernovae of different types.  相似文献   

17.
The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchrotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 106K or if the polar cap temperature is of the order of 5×106K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered.  相似文献   

18.
The theory of pulsar radio emission has been developed in a series of our papers since 1992. It was shown that pulsar radio emission is produced in the lower part of a channel of open magnetic field lines, in a region with a height h ≈ 1.1-107 μ 30 1/3 /P4/21 cm above a magnetic cap of the neutron star (P is the pulsar’s period and μ is the star’s magnetic moment). Here, owing to vigorously occurring processes (the production of photons of curvature radiation and their annihilation into e+e- pairs), two ultrarelativistic particle fluxes are formed: an electron flux moving upward and a positron flux falling onto the star’s magnetic cap. These main fluxes are accompanied by narrow strips of positron and electron fluxes of relatively low energy, the curvature emission from which is a strong coherent radio source. The present paper is a review of earlier papers, and important additions and refinements are also made. Equations are offered for the radio luminosity of a pulsar, the solid angle of the radio beam, and the magnetic moment and moment of inertia of the pulsar’s neutron star. Translated from Astrofizika, Vol. 43, No. 1, pp. 147-169, January–March, 2000.  相似文献   

19.
We have studied the fine structure of the active H2O supermaser emission region in Orion KL with an angular resolution of 0.1 mas. We found central features suggestive of a bipolar outflow, bullets, and an envelope which correspond to the earliest stage of low-mass star formation. The ejector is a bright compact source ≤0.05 AU in size with a brightness temperature T b ?1017 K. The highly collimated bipolar outflow ~30 has a velocity v ej ?10 km s?1, a rotation period of ~0.5 yr, a precession period of ~10 yr, and a precession angle of ~33°. Precession gives rise to a jet in the shape of a conical helix. The envelope amplifies the radio emission from the components by about three orders of magnitude at a velocity v=7.65 km s?1.  相似文献   

20.
We show that the pair production rate in a strong magnetic field is substantially altered when an electric field is also included. We illustrate and emphasize this significant alteration by considering a few special cases. In the vicinity of the polar cap of a rotating magnetized neutron star it is currently though thatboth steady electric and magnetic fields must be present. The results presented here then indicate that some considerable degree of caution must be exercised in applying pair production rates calculated under the assumption of zero electric field to the problems of pulsar emission and the generation and maintence of pulsar magnetospheres. In general such rates are very different from the rate computed allowing for the existence of an electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号