首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In the framework of the planar and circular restricted three-body problem, we consider an asteroid that orbits the Sun in quasi-satellite motion with a planet. A quasi-satellite trajectory is a heliocentric orbit in co-orbital resonance with the planet, characterized by a nonzero eccentricity and a resonant angle that librates around zero. Likewise, in the rotating frame with the planet, it describes the same trajectory as the one of a retrograde satellite even though the planet acts as a perturbator. In the last few years, the discoveries of asteroids in this type of motion made the term “quasi-satellite” more and more present in the literature. However, some authors rather use the term “retrograde satellite” when referring to this kind of motion in the studies of the restricted problem in the rotating frame. In this paper, we intend to clarify the terminology to use, in order to bridge the gap between the perturbative co-orbital point of view and the more general approach in the rotating frame. Through a numerical exploration of the co-orbital phase space, we describe the quasi-satellite domain and highlight that it is not reachable by low eccentricities by averaging process. We will show that the quasi-satellite domain is effectively included in the domain of the retrograde satellites and neatly defined in terms of frequencies. Eventually, we highlight a remarkable high eccentric quasi-satellite orbit corresponding to a frozen ellipse in the heliocentric frame. We extend this result to the eccentric case (planet on an eccentric motion) and show that two families of frozen ellipses originate from this remarkable orbit.  相似文献   

2.
J.E. Chambers 《Icarus》2007,189(2):386-400
The stability of an additional planet between the orbit of Mars and the asteroid belt is examined in the context of the Planet V hypothesis. In this model, the Solar System initially contained a fifth terrestrial planet, “Planet V,” which was removed after ∼700 Myr, a possible trigger for the late heavy bombardment on the inner planets. The model is investigated using 96 N-body integrations of the 8 major planets with an additional body between Mars and the asteroid belt. In more than 1/4 of simulations, Planet V survives for 1000 Myr. In most other cases, Planet V collides with the Sun or hits another planet after several hundred Myr, leaving 4 surviving terrestrial planets. In 24/96 simulations, Planet V is lost by ejection or collision with the Sun while the other four terrestrial planets survive without undergoing a collision. In 18 cases, Planet V is removed at least 200 Myr after the beginning of the simulation. The endstate depends sensitively on the mass of Planet V. Collision with the Sun is likely when Planet V's mass is 0.25 Mars masses or less. When Planet V is more massive than this, collisions involving it and/or other terrestrial planets become commonplace. In unstable systems, the times of first encounter and first collision/ejection depend on the initial aphelion distance of Mars. Reducing Mars's aphelion distance increases these times and also increases the fraction of systems surviving for 1000 Myr. When Mars's current orbit is used, the stability of Planet V increases when these two planets are widely separated initially. Planet V's aphelion distance Q typically begins to cross the asteroid belt within a few tens to a few hundred Myr, and its orbit last leaves the belt several hundred Myr later in most cases. The total time spent with Q>2.1 AU is typically less than 200 Myr.  相似文献   

3.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

4.
We consider dynamics of a Sun–Jupiter–Asteroid system, and, under some simplifying assumptions, show the existence of instabilities in the motions of an asteroid. In particular, we show that an asteroid whose initial orbit is far from the orbit of Mars can be gradually perturbed into one that crosses Mars’ orbit. Properly formulated, the motion of the asteroid can be described as a Hamiltonian system with two degrees of freedom, with the dynamics restricted to a “large” open region of the phase space reduced to an exact area preserving map. Instabilities arise in regions where the map has no invariant curves. The method of MacKay and Percival is used to explicitly rule out the existence of these curves, and results of Mather abstractly guarantee the existence of diffusing orbits. We emphasize that finding such diffusing orbits numerically is quite difficult, and is outside the scope of this paper.  相似文献   

5.
We review the results of an extensive campaign to determine the physical, geological, and dynamical properties of asteroid (101955) Bennu. This investigation provides information on the orbit, shape, mass, rotation state, radar response, photometric, spectroscopic, thermal, regolith, and environmental properties of Bennu. We combine these data with cosmochemical and dynamical models to develop a hypothetical timeline for Bennu's formation and evolution. We infer that Bennu is an ancient object that has witnessed over 4.5 Gyr of solar system history. Its chemistry and mineralogy were established within the first 10 Myr of the solar system. It likely originated as a discrete asteroid in the inner Main Belt approximately 0.7–2 Gyr ago as a fragment from the catastrophic disruption of a large (approximately 100‐km), carbonaceous asteroid. It was delivered to near‐Earth space via a combination of Yarkovsky‐induced drift and interaction with giant‐planet resonances. During its journey, YORP processes and planetary close encounters modified Bennu's spin state, potentially reshaping and resurfacing the asteroid. We also review work on Bennu's future dynamical evolution and constrain its ultimate fate. It is one of the most Potentially Hazardous Asteroids with an approximately 1‐in‐2700 chance of impacting the Earth in the late 22nd century. It will most likely end its dynamical life by falling into the Sun. The highest probability for a planetary impact is with Venus, followed by the Earth. There is a chance that Bennu will be ejected from the inner solar system after a close encounter with Jupiter. OSIRIS‐REx will return samples from the surface of this intriguing asteroid in September 2023.  相似文献   

6.
The stability of an imaginary planet located in the present main asteroid belt is studied with a 7-body model (Sun, Mars, Jupiter, Saturn, Uranus, Neptune and the imaginary planet). The fourth-order Hermite algorithm P(EC)3 is used, which has a very small secular energy error for the integration of periodic orbits with a constant time-step. The evolution of orbits is followed up to 108 years. Our numerical results show that the low-order resonances with Jupiter can enhance the stability of the imaginary planet in some cases. The survival probability of the imaginary planet decreases with the planet mass. The upper limit of the imaginary planet's mass that can survive in the main belt is around 1025 kg, i.e., about the Earth's mass.  相似文献   

7.
Applying the method of analytical continuation of periodic orbits, we study quasi-satellite motion in the framework of the three-body problem. In the simplest, yet not trivial model, namely the planar circular restricted problem, it is known that quasi-satellite motion is associated with a family of periodic solutions, called family f, which consists of 1:1 resonant retrograde orbits. In our study, we determine the critical orbits of family f that are continued both in the elliptic and in the spatial models and compute the corresponding families that are generated and consist the backbone of the quasi-satellite regime in the restricted model. Then, we show the continuation of these families in the general three-body problem, we verify and explain previous computations and show the existence of a new family of spatial orbits. The linear stability of periodic orbits is also studied. Stable periodic orbits unravel regimes of regular motion in phase space where 1:1 resonant angles librate. Such regimes, which exist even for high eccentricities and inclinations, may consist dynamical regions where long-lived asteroids or co-orbital exoplanets can be found.  相似文献   

8.
The problem of how to determine parameters of motion for an automated interplanetary probe (AIP) on a quasi-satellite orbit during flight to the small natural satellite of a planet is examined. The problem is solved by searching for an optimal state-space trajectory of automated interplanetary probe according to the least-squares criterion. The results of longitude and latitude measurements at several points are used as boundary conditions.  相似文献   

9.
From our investigation of the behavior of changes in the visible brightness of Jupiter observed since 1850, it follows that the 22.3-year Hale magnetic cycle of solar activity produces the dominating influence on the processes taking place in the troposphere at a level of forming the upper boundary of clouds. The maximum values of the integral brightness of Jupiter fall on the solar cycle with the highest value of the Wolf number for the last 165 years (around 1957). The lowest estimates of brightness were obtained in 1855, when the Wolf number in the 12th solar-activity cycle was smallest. The analysis of the reflectance of Jupiter’s hemispheres in the visible spectral range for 1962–2015 revealed the alternating increase in the brightness of southern and northern tropical and middle regions for one rotation period of Jupiter about the Sun. Such a change in brightness and the increase in the activity of different hemispheres of the planet may indicate the periodic global alteration in the circulation system, the structure of cloud layers, and the overcloud haze. This suggests the interrelation between the observed variations in the reflectance of the considered latitudinal belts of Jupiter and the change in the axial tilts of the planet itself and its magnetic field to the orbital plane, i.e., the seasonal alteration in the atmosphere. The comparison of the temporal dependence of the activity factor A j of the Jovian hemispheres in the visible spectral range with the change in the solar-activity index R shows that, from 1962 to 1995, these parameters almost synchronously changed, though the response of the visible cloud layer somewhat lagged behind the regime of exposure of the atmosphere to the Sun. The analysis shows that, when the planet is moving along the orbit, the reflectance of Jupiter’s hemispheres varies in response to the 21-percent change in the exposure of different hemispheres with a lag of 6 years. Such a lag coincides with the radiation- relaxation time of the hydrogen–helium atmosphere under the Jovian conditions. Desynchronization in their behavior that occurred after 1997 may be explained by the unbalanced influence of the three mentioned causes on the atmosphere of the planet.  相似文献   

10.
李培俊  周济林 《天文学报》2006,47(4):394-401
介绍了N体模拟的Hermite算法,并利用该算法研究了不同质量行星在小行星主带上轨道的演化情况.采用的演化模型是太阳系N体模型(N=7),即把水星、金星、地球的质量加到太阳上,忽略冥王星,同时在小行星主带附近增加一个假想行星,系统演化时间为1亿年.数值模拟显示能够稳定存在于小行星主带上的单个天体的质量上限其量级为10~(25)kg.模拟同时还显示在某些情况下,假想行星与木星之间的低阶共振可以增强系统的稳定性.  相似文献   

11.
Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth–Moon \(\hbox {L}_{1}\) and \(\hbox {L}_{2}\) points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun–Earth–Moon restricted four-body problem until its insertion, with a second impulse, onto the \(\hbox {L}_{2}\) stable manifold in the Earth–Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid’s initial obit to the stable manifold associated with Earth–Moon \(\hbox {L}_{2}\) point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun–Earth circular restricted three-body problem and subsequent transfer to the Earth–Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth–Moon system.  相似文献   

12.
We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this sys-tem can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU ≤ a ≤ 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and sev-eral stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.  相似文献   

13.
New calculations of the main term of the advance of perihelion for the asteroid Icarus and planet Mercury are discussed. With the help of this author’s previously published formula for the advance, results are then compared to the values given by Einstein’s approximation.  相似文献   

14.
Abstract– The asteroid belt is found today in a dramatically different state than that immediately following its formation. It is estimated that it has been depleted in total mass by a factor of at least 1000 since its formation, and that the asteroids’ orbits evolved from having near‐zero eccentricity and inclination to the complex distributions we find today. The asteroid belt also hosts a wide range of compositions, with the inner regions dominated by S‐type and other water‐poor asteroids and the outer regions dominated by C‐type and other primitive asteroids. We discuss a model of early inner solar system evolution whereby the gas‐driven migration of Jupiter and Saturn brings them inwards to 1.5 AU, truncating the disk of planetesimals in the terrestrial planet region, before migrating outwards toward their current locations. This model, informally titled “The Grand Tack,” examines the planetary dynamics of the solar system bodies during the final million years of the gaseous solar nebula lifetime—a few million years (Myr) after the formation of the first solids, but 20–80 Myr before the final accretion of Earth, and approximately 400–600 Myr before the Late Heavy Bombardment of the inner solar system. The Grand Tack attempts to solve some outstanding problems for terrestrial planet formation, by reproducing the size of Mars, but also has important implications for the asteroid population. The migration of Jupiter causes a very early depletion of the asteroid belt region, and this region is then repopulated from two distinct source regions, one inside the formation region of Jupiter and one between and beyond the giant planets. The scattered material reforms the asteroid belt, producing a population the appropriate mass, orbits, and with overlapping distributions of material from each parent source region.  相似文献   

15.
We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. This exchange is facilitated by secondary resonances that arise whenever there is more than one migrating planet. For example, secondary resonances may occur when the circulation frequencies, f, of critical arguments for the Uranus-Neptune 2:1 mean-motion near-resonance are commensurate with harmonics of the libration frequency of the critical argument for the Trojan and quasi-satellite 1:1 mean-motion resonance . Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ≈80% of jovian quasi-satellites experience one or more close-encounters within Jupiter’s Hill radius (RH) as they are forced out of the quasi-satellite resonance. As many as ≈20% come within RH/4 and ≈2.5% come within RH/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet. Finally, the exchange and escape of Trojans and quasi-satellites continues to as late as 6-9τ in some simulations. By this time the dynamical evolution of the planets is strongly dominated by distant gravitational perturbations between the planets rather than the migration force. This suggests that exchange and escape of Trojans and quasi-satellites may be a contemporary process associated with the present-day near-resonant configuration of some of the giant planets in our Solar System.  相似文献   

16.
The nearest in time close approach of potentially hazardous asteroid (99942) Apophis with the Earth will take place on April 13, 2029, when the minimum distance of the asteroid from the Earth’s center will be as small as 38 000 km. Such a close approach will result in substantial transformation of the asteroid’s orbit. The value of the perturbations depends on the minimum distance between the bodies during the approach. Among possible transformations of the orbit are those which result in new dangerous approaches and even in probable Apophis collisions with the Earth starting from 2036. At present, at least four solutions are known for the Apophis orbit which were obtained using all radar and most of available optical observations. The procedures of assigning weights to conditional equations and the models of the asteroid’s motion have differed to some extent when finding these solutions. Of considerable interest is the comparison of the found orbital parameters with the estimates of their accuracy, since small distinctions in their values result in considerable distinctions in the forecast of Apophis’ motion after 2029 and beyond. It is shown in the paper that the estimates of the probability of an Apophis collision with the Earth in 2036 differ by some orders of magnitude, according to various solutions. The influence of factors which were disregarded in the models of motion even more increases the uncertainty in forecasting the motion after 2029. More accurate forecasting can be achieved as a result of additional optical and, to a greater extent, a series of radar observations in 2013 and then in 2020–2021, and/or as a result of processing radio signals of the transmitter delivered to the Apophis surface or to the orbit of its artificial satellite, as it was proposed in a number of papers.  相似文献   

17.
We analyze the stability of periodic solutions for Hill’s double-averaged problem by taking into account a central planet’s oblateness. They are generated by steady-state solutions that are stable in the linear approximation. By numerically calculating the monodromy matrix of variational equations, we plot its trace against the integral of the problem—an averaged perturbing function, for two model systems, [(Sun + Moon)-Earth-satellite] and (Sun-Uranus-satellite). We roughly estimate the ranges of values for the parameters of satellite orbits corresponding to periodic solutions of the evolutionary system that are stable in the linear approximation.  相似文献   

18.
共轨运动天体与摄动天体的半长径相同,处于1:1平运动共振中.太阳系内多个行星的特洛伊天体即为处于蝌蚪形轨道的共轨运动天体,其中一些高轨道倾角特洛伊天体的轨道运动与来源仍未被完全理解.利用一个新发展的适用于处理1:1平运动共振的摄动函数展开方式,对三维空间中的共轨运动进行考察,计算不同初始轨道根数情况下共轨轨道的共振中心、共振宽度,分析轨道类型与初始轨道根数的关系.并将分析方法所得结果与数值方法的结果相互比较验证,得到了广阔初始轨道根数空间内共轨运动的全局图景.  相似文献   

19.
The atmospheric detonation of a 17 m-asteroid above Chelyabinsk, Russia on 2013 February 15 shows that even small asteroids can cause extensive damage. Earth-based telescopes have found smaller harmless objects, such as 2008 TC3, a 4 m-asteroid that was discovered 20h before it exploded over northeastern Sudan (Jenniskens, 2009). 2008 TC3 remains the only asteroid discovered before it hit Earth because it approached Earth from the night side, where it was observed by large telescopes searching for near-Earth objects (NEO’s). The larger object that exploded over Chelyabinsk approached Earth from the day side, from too close to the Sun to be detected from Earth. A sizeable telescope in an orbit about the Sun-Earth L1 (SE-L1) libration point could find objects like the “Chelyabinsk” asteroid approaching approximately from the line of sight to the Sun about a day before Earth closest approach. Such a system would have the astrometric accuracy needed to determine the time and impact zone for a NEO on a collision course. This would give at least several hours, and usually 2–4 days, to take protective measures, rather than the approximately two-minute interval between the flash and shock wave arrival that occurred in Chelyabinsk. A perhaps even more important reason for providing warning of these events, even smaller harmless ones that explode high in the atmosphere with the force of an atomic bomb, is to prevent mistaking such an event for a nuclear attack that could trigger a devastating nuclear war. A concept using a space telescope similar to that needed for an SE-L1 monitoring satellite, is already conceived by the B612 Foundation, whose planned Sentinel Space Telescope could find nearly all 140 m and larger NEO’s, including those in orbits mostly inside the Earth’s orbit that are hard to find with Earth-based telescopes, from a Venus-like orbit (Lu, 2013). Few modifications would be needed to the Sentinel Space Telescope to operate in a SE-L1 orbit, 0.01 AU from Earth towards the Sun, to find most asteroids larger than about 5 meters that approach the Earth from the solar direction. The spacecraft would scan 165 square degrees of the sky around the Earth every hour, finding asteroids when they are brightest (small phase angle) as they approach Earth. We will undertake Monte Carlo studies to see what fraction of asteroids 5 m and larger approaching from the Sun might be found by such a mission, and how much warning time might typically be expected. Also, we will check the overall coverage for all Earth-approaching NEO’s, including ground-based observations and observations by the recently-launched NEOSSat, which may best fill any gaps in coverage between that provided by an SE-L1 telescope and ground-based surveys. Many of the objects as large as 50 m, like the one that created Meteor Crater in Arizona, will not be found by current NEO surveys, while they would usually be seen by this possible mission even if they approached from the direction of the Sun. We should give better warning for future “Bolts out of the blue.”  相似文献   

20.
Abstract— We have examined the fate of impact ejecta liberated from the surface of Mercury due to impacts by comets or asteroids, in order to study 1) meteorite transfer to Earth, and 2) reaccumulation of an expelled mantle in giant‐impact scenarios seeking to explain Mercury's large core. In the context of meteorite transfer during the last 30 Myr, we note that Mercury's impact ejecta leave the planet's surface much faster (on average) than other planets in the solar system because it is the only planet where impact speeds routinely range from 5 to 20 times the planet's escape speed; this causes impact ejecta to leave its surface moving many times faster than needed to escape its gravitational pull. Thus, a large fraction of Mercurian ejecta may reach heliocentric orbit with speeds sufficiently high for Earth‐crossing orbits to exist immediately after impact, resulting in larger fractions of the ejecta reaching Earth as meteorites. We calculate the delivery rate to Earth on a time scale of 30 Myr (typical of stony meteorites from the asteroid belt) and show that several percent of the high‐speed ejecta reach Earth (a factor of 2–3 less than typical launches from Mars); this is one to two orders of magnitude more efficient than previous estimates. Similar quantities of material reach Venus. These calculations also yield measurements of the re‐accretion time scale of material ejected from Mercury in a putative giant impact (assuming gravity is dominant). For Mercurian ejecta escaping the gravitational reach of the planet with excess speeds equal to Mercury's escape speed, about one third of ejecta reaccretes in as little as 2 Myr. Thus collisional stripping of a silicate proto‐Mercurian mantle can only work effectively if the liberated mantle material remains in small enough particles that radiation forces can drag them into the Sun on time scale of a few million years, or Mercury would simply re‐accrete the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号