首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The time variations in the Gutenberg–Richter b-value are minutely studied based on the data of highly accurate seismological observations at the Garm prognostic site, Tajikistan, where a stationary network of seismic stations of the Complex Seismological Expedition (CSE) of Schmidt Institute of Physics of the Earth (IPE) of the USSR (Russian) Academy of Sciences was in operation from 1955 to 1992. A total of 93035 local earthquakes ranging from 0.0 to 6.3 in the Ml magnitudes are considered. The spatiotemporal fluctuations in the minimal magnitude of completeness of the earthquakes, Mc, are analyzed. The study considers a 25-year interval of the observations at the center of the observation system within which Mc = 0.9. It is shown that in most cases, the b-value and log10E2/3 experience characteristic time variations before the earthquakes with magnitudes higher than the minimal magnitude of the predicted earthquake (MPE). The 6-year anomaly in the parameters’ b-value, log10E2/3, and log10N associated with the single strongest earthquake with M = 6.3 that occurred in the observation region on October 26, 1984 is revealed. The inversely proportional relationship is established between the time variations in the b-value and the time variations in the velocities of seismic waves Vp and Vp/Vs. It is shown that the exponent p in the power function which links the time variations of the b-value and log10E2/3 is higher in the zones of crustal compression than in the zones of extension. It is simultaneously confirmed that the average b-value in the zones of compression is lower than in the zones of extension. It is established that in the case of earthquakes with M ≥ 2.6, the time series of seismic activity log10Ni and the time series of the b-value are highly cross correlated with a coefficient of r ≈ 0.75, whereas in the case of earthquakes with M ≥ 0.9, the coefficient of cross correlation between these time series is close to zero (r ≈ 0.06). The law of variations in the slope of the lines approximating the relationship between the log10Ni time series in the different magnitude ranges (MMci) and b-value time series is obtained. It is hypothesized that the seismic activity of the earthquakes with high magnitudes can be estimated provided that the parameters of the time series of the b-value and time series of the number of earthquakes logNMi) in the range of low magnitudes are known. It is concluded that using the parameter log10N for prognostic estimates of the strong earthquakes only makes sense for earthquakes having moderate and large magnitudes. It is inferred that the time variations in the b-value are predominantly contributed by the time variations of the earthquakes with relatively large magnitudes.  相似文献   

2.
The Sakarya prefecture is an interesting area with various seismicity types. This activity comes from earthquakes occurring at the North Anatolian Fault Zone and from a few quarry blast areas in the region. These quarry blast recordings produce errors in the determination of active faults and mapping of the microearthquake activity. Therefore, to recognize the tectonic activity in the region, we need to be able to discriminate between earthquakes and quarry blasts in the catalogues. In this study, a statistical analysis method (linear discriminant function) has been applied to classify seismic events occurring in the Sakarya region. We used 110 seismic events that were recorded by Sakarya University Seismic Station between 2012 and 2014. Time and frequency variant parameters, maximum S wave and maximum P wave amplitude ratio (S/P), the spectral ratio (Sr), maximum frequency (fmax), and total signal duration of the waveform were used for discrimination analyses. The maximum frequency (fmax) versus time duration of the seismic signal gives a higher classification percentage (94%) than the other discriminants. At the end of this study, 41 out of 110 events (44%) are determined as quarry blasts, and 62 (56%) are considered as earthquakes.  相似文献   

3.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

4.
It is a common opinion that only crustal earthquakes can occur in the Crimea–Black Sea region. Since the existence of deep earthquakes in the Crimea–Black Sea region is extremely important for the construction of a geodynamic model for this region, an attempt is made to verify the validity of this widespread view. To do this, the coordinates of all earthquakes recorded by the stations of the Crimean seismological network are reinterpreted with an algorithm developed by one of the authors. The data published in the seismological catalogs and bulletins of the Crimea–Black Sea region for 1970–2012 are used for the analysis. To refine the coordinates of hypocenters of earthquakes in the Crimea–Black Sea region, in addition to the data from stations of the Crimean seismological network, information from seismic stations located around the Black Sea coast are used. In total, the data from 61 seismic stations were used to determine the hypocenter coordinates. The used earthquake catalogs for 1970–2012 contain information on ~2140 events with magnitudes from–1.5 to 5.5. The bulletins provide information on the arrival times of P- and S-waves at seismic stations for 1988 events recorded by three or more stations. The principal innovation of this study is the use of the original author’s hypocenter determination algorithm, which minimizes the functional of distances between the points (X, Y, H) and (x, y, h) corresponding to the theoretical and observed seismic wave travel times from the earthquake source to the recording stations. The determination of the coordinates of earthquake hypocenters is much more stable in this case than the usual minimization of the residual functional for the arrival time of an earthquake wave at a station (the difference between the theoretical and observed values). Since determination of the hypocenter coordinates can be influenced by the chosen velocity column beneath each station, special attention is focused on collecting information on velocity profiles. To evaluate the influence of the upper mantle on the results of calculating the velocity model, two different low-velocity and high-velocity models are used; the results are compared with each other. Both velocity models are set to a depth of 640 km, which is fundamentally important in determining hypocenters for deep earthquakes. Studies of the Crimea–Black Sea region have revealed more than 70 earthquakes with a source depth of more than 60 km. The adequacy of the obtained depth values is confirmed by the results of comparing the initial experimental data from the bulletins with the theoretical travel-time curves for earthquake sources with depths of 50 and 200 km. The sources of deep earthquakes found in the Crimea–Black Sea region significantly change our understanding of the structure and geotectonics of this region.  相似文献   

5.
We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes (USLE), which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L)?=?A?+?B·(5 – M)?+?C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within a seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g., peak ground acceleration, PGA, or macro-seismic intensity). After a rigorous verification against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory). The methodology of seismic hazard and risk assessment is illustrated by application to the territory of Greater Caucasus and Crimea.  相似文献   

6.
Seismic strain and b value are used to quantify seismic potential in the Zagros region (Iran). Small b values (0.69 and 0.69) are related to large seismic moment rates (9.96×1017 and 4.12×1017) in southern zones of the Zagros, indicating more frequent large earthquakes. Medium to large b values (0.72 and 0.92) are related to small seismic moment rates (2.94×1016 and 6.80×1016) in middle zones of the Zagros, indicating less frequent large earthquakes. Small b value (0.64) is related to medium seismic moment rate (1.38×1017) in middle to northern zone of the Zagros, indicating frequent large earthquakes. Large b value (0.87) is related to large seismic moment rate (2.29×1017) in northwestern zone, indicating more frequent large earthquakes. Recurrence intervals of large earthquakes (M > 6) are short in southern (10 and 14 years) and northwestern (13 years) zones, while the recurrence intervals are long in the middle (46 and 114 years) and middle to northern (25 years) zones.  相似文献   

7.
This paper aims at investigating possible regional attenuation patterns in the case of Vrancea(Romania) intermediate-depth earthquakes.Almost 500 pairs of horizontal components recorded during 13 intermediate-depth Vrancea earthquakes are employed in order to evaluate the regional attenuation patterns.The recordings are grouped according to the azimuth with regard to the Vrancea seismic source and subsequently,Q models are computed for each azimuthal zone assuming similar geometrical spreading.Moreover,the local soil amplification which was disregarded in a previous analysis performed for Vrancea intermediate-depth earthquakes is now clearly evaluated.The results show minor differences between the four regions situated in front of the Carpathian Mountains and considerable differences in attenuation of seismic waves between the forearc and backarc regions(with regard to the Carpathian Mountains).Consequently,an average Q model of the type Q(f) = 115×f~(1.25) is obtained for the four forearc regions,while a separate Q model of the type Q(f) = 70×f~(0.90) is computed for the backarc region.These results highlight the need to evaluate the seismic hazard of Romania by using ground motion models which take into account the different attenuation between the forearc/backarc regions.  相似文献   

8.
Based on the analysis of the world’s earthquakes with magnitudes M ≥ 6.5 for 1960–2013, it is shown that they cause global-scale coherent seismic oscillations which most distinctly manifest themselves in the period interval of 4–6 min during 1–3 days after the event. After these earthquakes, a repeated shock has an increased probability to occur in different seismically active regions located as far away as a few thousand km from the previous event, i.e., a remote interaction of seismic events takes place. The number of the repeated shocks N(t) decreases with time, which characterizes the memory of the lithosphere about the impact that has occurred. The time decay N(t) can be approximated by the linear, exponential, and powerlaw dependences. No distinct correlation between the spatial locations of the initial and repeated earthquakes is revealed. The probable triggering mechanisms of the remote interaction between the earthquakes are discussed. Surface seismic waves traveling several times around the Earth’s, coherent oscillations, and global source are the most preferable candidates. This may lead to the accumulation and coalescence of ruptures in the highly stressed or weakened domains of a seismically active region, which increases the probability of a repeated earthquake.  相似文献   

9.
The locations of possible earthquake occurrence (magnitudes M ≥ 6) have been determined for mountainous Crimea and the adjacent sea shelf, including the continental slope zone. The earthquake-generating structures were assumed to be intersections of morphostructural lineaments as found by morphostructural zoning. The measurement of geological and geophysical characteristics was followed by applying a decision rule that was derived previously using the CORA-3 pattern recognition algorithm in order to find possible locations of M ≥ 6 earthquakes in the Caucasus. The results corroborate the high seismic potential for the Yalta area where two events with magnitudes of 6.0 and 6.8 occurred in 1927, as well as indicating the possibility of M ≥ 6 earthquakes in other areas in mountainous Crimea and in the adjacent Black Sea area where no such events have yet been recorded.  相似文献   

10.
11.
The paper addresses the construction of one-dimensional (1D) velocity models in the seismogenic regions of Azerbaijan taken individually and the analysis of implications of these models for estimating the key parameters of earthquake sources in Azerbaijan. We considered and analyzed the seismological data from the local earthquakes, the arrival times of the P-, P-g, Pn-, S-, Sg-, and Sn-waves recorded by the network of telemetry stations during the period from 2005 to 2014 with ml ≥ 2.5. For constructing the models, we used the VELEST program which calculates 1D velocity models from travel times of seismic waves. As a result, the 1D models were built for ten regions of Azerbaijan; the key parameters of the hypocenters of the earthquakes were recalculated; and the corrections to the body-wave arrival times at the observation stations were obtained, which increased the accuracy of locating the hypocenter of earthquakes.  相似文献   

12.
The purpose of this work is to define a seismic regionalization of Mexico for seismic hazard and risk analyses. This seismic regionalization is based on seismic, geologic, and tectonic characteristics. To this end, a seismic catalog was compiled using the more reliable sources available. The catalog was made homogeneous in magnitude in order to avoid the differences in the way this parameter is reported by various agencies. Instead of using a linear regression to converts from m b and M d to M s or M w , using only events for which estimates of both magnitudes are available (i.e., paired data), we used the frequency-magnitude relations relying on the a and b values of the Gutenberg-Richter relation. The seismic regions are divided into three main categories: seismicity associated with the subduction process along the Pacific coast of Mexico, in-slab events within the down-going COC and RIV plates, and crustal seismicity associated to various geologic and tectonic regions. In total, 18 seismic regions were identified and delimited. For each, the a and b values of the Gutenberg-Richter relation were determined using a maximum likelihood estimation. The a and b parameters were repeatedly estimated as a function of time for each region, in order to confirm their reliability and stability. The recurrence times predicted by the resulting Gutenberg-Richter relations obtained are compared with the observed recurrence times of the larger events in each region of both historical and instrumental earthquakes.  相似文献   

13.
We have studied changes in the ionosphere prior to strong crustal earthquakes with magnitudes of М ≥ 6.5 based on the data from the ground-based stations of vertical ionospheric sounding Kokobunji, Akita, and Wakkanai for the period 1968–2004. The data are analyzed based on hourly measurements of the virtual height and frequency parameters of the sporadic E layer and critical frequency of the regular F2 layer over the course of three days prior to the earthquakes. In the studied intervals of time before all earthquakes, anomalous changes were discovered both in the frequency parameters of the Es and F2 ionospheric layers and in the virtual height of the sporadic E layer; the changes were observed on the same day at stations spaced apart by several hundred kilometers. A high degree of correlation is found between the lead-time of these ionospheric anomalies preceding the seismic impact and the magnitude of the subsequent earthquakes. It is concluded that such ionospheric disturbances can be short-term ionospheric precursors of earthquakes.  相似文献   

14.
Based on the Anapa (ANN) seismic station records of ~40 earthquakes (MW > 3.9) that occurred within ~300 km of the station since 2002 up to the present time, the source parameters and quality factor of the Earth’s crust (Q(f)) and upper mantle are estimated for the S-waves in the 1–8 Hz frequency band. The regional coda analysis techniques which allow separating the effects associated with seismic source (source effects) and with the propagation path of seismic waves (path effects) are employed. The Q-factor estimates are obtained in the form Q(f) = 90 × f 0.7 for the epicentral distances r < 120 km and in the form Q(f) = 90 × f1.0 for r > 120 km. The established Q(f) and source parameters are close to the estimates for Central Japan, which is probably due to the similar tectonic structure of the regions. The shapes of the source parameters are found to be independent of the magnitude of the earthquakes in the magnitude range 3.9–5.6; however, the radiation of the high-frequency components (f > 4–5 Hz) is enhanced with the depth of the source (down to h ~ 60 km). The estimates Q(f) of the quality factor determined from the records by the Sochi, Anapa, and Kislovodsk seismic stations allowed a more accurate determination of the seismic moments and magnitudes of the Caucasian earthquakes. The studies will be continued for obtaining the Q(f) estimates, geometrical spreading functions, and frequency-dependent amplification of seismic waves in the Earth’s crust in the other regions of the Northern Caucasus.  相似文献   

15.
Statistical tests have been used to adjust the Zemmouri seismic data using a distribution function. The Pareto law has been used and the probabilities of various expected earthquakes were computed. A mathematical expression giving the quantiles was established. The extreme values limiting law confirmed the accuracy of the adjustment method. Using the moment magnitude scale, a probabilistic model was made to predict the occurrences of strong earthquakes. The seismic structure has been characterized by the slope of the recurrence plot γ, fractal dimension D, concentration parameter Ksr, Hurst exponents Hr and Ht. The values of D, γ, Ksr, Hr, and Ht diminished many months before the principal seismic shock (M = 6.9) of the studied seismoactive zone has occurred. Three stages of the deformation of the geophysical medium are manifested in the variation of the coefficient G% of the clustering of minor seismic events.  相似文献   

16.
At the beginning of the 21st century, a series of great earthquakes were recorded in northeastern Tibet, along the periphery of the Bayan Hara lithospheric block. An earthquake with MS = 8.1 occurred within the East Kunlun fault zone in the Kunlun Mountains, which caused an extended surface rupture with left-lateral strike slip. An earthquake with MS = 8 occurred in Wenchuan (China) on May 12, 2008, giving rise to an extended overthrust along the Lunmanshan fault zone. An earthquake with MS = 7.1 occurred in Yushu (China) on April 14, 2010; its epicenter was on the Grazze–Yushu–Funchuoshan fault; a left-lateral strikeslip offset was observed on the surface. An earthquake with MS = 7 occurred in the vicinity of Lushan on April 20, 2013; its epicenter was within the Lunmanshan fault zone, 103 km southwest of the zone of the catastrophic Wenchuan earthquake. An earthquake with MS = 8.2 occurred in Nepal on April 25, 2015. Based on the CSN seismic catalog, the energy of all earthquakes in eastern Tibet at the end of the 20th and beginning of the 21st centuries was estimated. It was found that Tibet was seismically quiet from 1980 to 2000. The beginning of the 21st century has been marked by seismic activation with earthquake sources migrating southward to surround the Bayan Hara lithospheric block from every quarter. Therefore, this block can be regarded as one of the most seismically active regions of China.  相似文献   

17.
Archeoseismological studies of the Kurmenty settlement have proved the seismogenic origin of the deformation in the walls at this site. The radiocarbon age of the first seismic event damaged the walls of the settlement is 7th century AD. The second seismic event occurred a few centuries later, probably in the late Middle Ages. The strongest seismic events of North Tien Shan occurred in the late 19th–early 20th century as the Chilik (1889, M = 8.4) and Kebin (1911, M = 7.9) also damaged the walls of the Kurmenty settlement. The local shaking intensity during these seismic events was I ≥ VII on MSK-64 scale.  相似文献   

18.
The seismological data in the area of induced seismicity in the region of the Nurek reservoir are analyzed. The analysis is based on the developed database for the earthquakes that occurred from 1955 to 1989 and is aimed at finding the regularities in the variations of the parameters of the transitional seismic regime caused by filling a reservoir. These parameters include the b-value—the slope of the graph of the Gutenberg–Richter frequency–magnitude relationship, the fractal dimension d of the set of the epicenters, and fracture cycle parameter q = αb ? d, where coefficient α determines the ratio between the magnitude and source size M = α log l + β. It is shown that during the filling of a reservoir, these parameters undergo statistically reliable variations: at the initial stages, the b-value increases, the fractal dimension of the set of epicenters decreases, and the fracture cycle parameter q grows and becomes positive in the middle of the time interval of reservoir filling. After a reservoir is filled, these parameters recover their background values. The aftershock sequences of the three strongest earthquakes—before, in the beginning, and in the middle of the reservoir filling period—are studied. It is confirmed that the Omori parameter p for the aftershock sequences during filling is smaller than for the earthquake before filling. Based on the dynamics of the studied parameters, it is conjectured that the relaxation time of the transitional seismic regime after the emergence of induced seismicity is about 10 years.  相似文献   

19.
Between 2013 June and 2015 January, 35 earthquakes with local magnitude M L ranging from 1.1 to 4.2 occurred in Nógrád county, Hungary. This earthquake sequence represents above average seismic activity in the region and is the first one that was recorded by a significant number of three-component digital seismographs in the county. Using a Bayesian multiple-event location algorithm, we have estimated the hypocenters of 30 earthquakes with M L ≥1.5. The events occurred in two small regions of a few squared kilometers: one to the east of Érsekvadkert and the other at Iliny. The uncertainty of the epicenters is about 1.5–1.7 km in the E-W direction and 1.8–2.1 km in the N-S direction at the 95 % confidence level. The estimated event depths are confined to the upper 3 km of the crust. We have successfully estimated the full moment tensors of 4 M w ≥3.6 earthquakes using a probabilistic waveform inversion procedure. The non-double-couple components of the retrieved moment tensor solutions are statistically insignificant. The negligible amount of the isotropic component implies the tectonic nature of the investigated events. All of the analyzed earthquakes have strike-slip mechanism with either right-lateral slip on an approximately N-S striking or left-lateral movement on a roughly E-W striking nodal plane. The orientations of the obtained focal mechanisms are in good agreement with the main stress pattern published for the epicentral region. Both the P and T principal axes are horizontal, and the P axis is oriented along a NE-SW direction.  相似文献   

20.
In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of M L≥2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is proposed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号