首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Hydrodynamical simulations of galaxy formation in spatially flat cold dark matter (CDM) cosmologies with and without a cosmological constant (Λ) are described. A simple star formation algorithm is employed and radiative cooling is allowed only after redshift z =1 so that enough hot gas is available to form large, rapidly rotating stellar discs if angular momentum is approximately conserved during collapse. The specific angular momenta of the final galaxies are found to be sensitive to the assumed background cosmology. This dependence arises from the different angular momenta contained in the haloes at the epoch when the gas begins to collapse and the inhomogeneity of the subsequent halo evolution. In the Λ-dominated cosmology, the ratio of stellar specific angular momentum to that of the dark matter halo (measured at the virial radius) has a median value of ∼0.24 at z =0. The corresponding quantity for the Λ=0 cosmology is over three times lower. It is concluded that the observed frequency and angular momenta of disc galaxies pose significant problems for spatially flat CDM models with Λ=0 but may be consistent with a Λ-dominated CDM universe.  相似文献   

2.
Dwarf galaxy rotation curves and the core problem of dark matter haloes   总被引:1,自引:0,他引:1  
The standard cold dark matter (CDM) model has recently been challenged by the claim that dwarf galaxies have dark matter haloes with constant-density cores, whereas CDM predicts haloes with steeply cusped density distributions. Consequently, numerous alternative dark matter candidates have recently been proposed. In this paper we scrutinize the observational evidence for the incongruity between dwarf galaxies and the CDM model. To this end, we analyse the rotation curves of 20 late-type dwarf galaxies studied by Swaters. Taking the effects of beam smearing and adiabatic contraction into account, we fit mass models to these rotation curves with dark matter haloes with different cusp slopes, ranging from constant-density cores to r −2 cusps. Even though the effects of beam smearing are small for these data, the uncertainties in the stellar mass-to-light ratio and the limited spatial sampling of the halo's density distribution hamper a unique mass decomposition. Consequently, the rotation curves in our sample cannot be used to discriminate between dark haloes with constant-density cores and r −1 cusps. We show that the dwarf galaxies analysed here are consistent with CDM haloes in a ΛCDM cosmology, and that there is thus no need to abandon the idea that dark matter is cold and collisionless. However, the data are also consistent with any alternative dark matter model that produces dark matter haloes with central cusps less steep than r −1.5. In fact, we argue that based on existing H  i rotation curves alone, at best weak limits can be obtained on cosmological parameters and/or the nature of the dark matter. In order to make progress, rotation curves with higher spatial resolution and independent measurements of the mass-to-light ratio of the disc are required.  相似文献   

3.
Accurate measurements of the mass distribution in galaxy and cluster haloes are essential to test the cold dark matter (CDM) paradigm. The cosmological model predicts a universal shape for the density profile in all haloes, independent of halo mass. Its profile has a 'cuspy' centre, with no evidence for the constant density core. In this paper, we carry out a careful analysis of 12 galaxy clusters, using Chandra data to compute the mass distribution in each system under the assumption of hydrostatic equilibrium. Due to their low concentration, clusters provide ideal objects for studying the central cusps in dark matter haloes. The majority of the systems are consistent with the CDM model, but four objects exhibit flat inner density profiles. We suggest that the flat inner profile found for these clusters is due to an underestimation of the mass in the cluster centre (rather than any problem with the CDM model), since these objects also have a centrally peaked gas mass fraction. We discuss possible causes for erroneously low-mass measurements in the cores of some systems.  相似文献   

4.
An inside–out model for the formation of haloes in a hierarchical clustering scenario is studied. The method combines the picture of the spherical infall model and a modification of the extended Press–Schechter theory. The mass accretion rate of a halo is defined to be the rate of its mass increase due to minor mergers. The accreted mass is deposited at the outer shells without changing the density profile of the halo inside its current virial radius. We applied the method to a flat Λ-cold dark matter universe. The resulting density profiles are compared with analytical models proposed in the literature, and a very good agreement is found. A trend is found of the inner density profile to become steeper for larger halo mass, which also results from recent N -body simulations. Additionally, present-day concentrations as well as their time evolution are derived and it is shown that they reproduce the results of large cosmological N -body simulations.  相似文献   

5.
We employ observationally determined intrinsic velocity widths and column densities of damped Lyman alpha (Lyα) systems at high redshift to investigate the distribution of baryons in protogalaxies within the context of a standard cold dark matter (CDM) model. We proceed under the assumption that damped Lyα systems represent a population of cold, rotationally supported, protogalactic discs, and that the abundance of dark matter haloes is well approximated by a CDM model with critical density and vanishing cosmological constant. Using conditional cross-sections to observe a damped system with a given velocity width and column density, we compare observationally inferred velocity width and column density distributions to the corresponding theoretically determined distributions for a variety of disc parameters and CDM normalizations. In general, we find that the observations cannot be reproduced by the models for most disc parameters and CDM normalizations. Whereas the column density distribution favours small discs with large neutral gas fraction, the velocity width distribution favours large and thick discs with small neutral gas fraction. The possible resolutions of this problem in the context of this CDM model may be (1) an increased contribution of rapidly rotating discs within massive dark matter haloes to damped Lyα absorption, or (2) the abandoning of simple disc models within this CDM model for damped Lyα systems at high redshift. Here the first possibility may be achieved by supposing that damped Lyα system formation occurs only in haloes with fairly large circular velocities, and the second possibility may result from a large contribution of mergers and double discs to damped Lyα absorption at high redshift.  相似文献   

6.
N -body simulations predict that cold dark matter (CDM) halo-assembly occurs in two phases: (i) a fast-accretion phase with a rapidly deepening potential well; and (ii) a slow-accretion phase characterized by a gentle addition of mass to the outer halo with little change in the inner potential well. We demonstrate, using one-dimensional simulations, that this two-phase accretion leads to CDM haloes of the Navarro, Frenk & White (NFW) form and provides physical insight into the properties of the mass-accretion history that influence the final profile. Assuming that the velocities of CDM particles are effectively isotropized by fluctuations in the gravitational potential during the fast-accretion phase, we show that gravitational collapse in this phase leads to an inner profile  ρ( r ) ∝ r −1  . Slow accretion on to an established potential well leads to an outer profile with  ρ( r ) ∝ r −3  . The concentration of a halo is determined by the fraction of mass that is accreted during the fast-accretion phase. Using an ensemble of realistic mass-accretion histories, we show that the model predictions of the dependence of halo concentration on halo formation time and, hence, the dependence of halo concentration on halo mass, and the distribution of halo concentrations all match those found in cosmological N -body simulations. Using a simple analytic model that captures much of the important physics, we show that the inner   r −1  profile of CDM haloes is a natural result of hierarchical mass assembly with an initial phase of rapid accretion.  相似文献   

7.
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated using a semi-analytical model, including a detailed treatment of the effects of tidal stripping and dynamical friction on satellite galaxies orbiting inside larger dark matter haloes. We include in the model the negative feedback on galaxy formation from the photoionizing background. Photoionization inhibits galaxy formation in low-mass dark matter haloes in two ways: (i) heating of the IGM and inhibition of the collapse of gas into dark haloes by the IGM pressure, and (ii) reduction in the rate of radiative cooling of gas within haloes. The result of our method is a self-consistent model of galaxy formation and the IGM. The IGM is reheated twice (during reionization of H  i and He  ii ), and we find that the star formation rate per unit volume is slightly suppressed after each episode of reheating. We find that galaxies brighter than L are mostly unaffected by reionization, while the abundance of faint galaxies is significantly reduced, leading to present-day galaxy luminosity functions with shallow faint-end slopes, in good agreement with recent observational data. Reionization also affects other properties of these faint galaxies, in a readily understandable way.  相似文献   

8.
We explain in simple terms how the build-up of dark haloes by merging compact satellites, as in the cold dark matter (CDM) cosmology, inevitably leads to an inner cusp of density profile  ρ∝ r −α  with  α≳ 1  , as seen in cosmological N -body simulations. A flatter halo core with  α < 1  exerts on the satellites tidal compression in all directions, which prevents the deposit of stripped satellite material in the core region. This makes the satellite orbits decay from the radius where  α∼ 1  to the halo centre with no local tidal mass transfer, and thus causes a rapid steepening of the inner profile to  α > 1  . These tidal effects, the resultant steepening of the profile to a cusp, and the stability of this cusp to tandem mergers with compact satellites are demonstrated using N -body simulations. The transition at  α∼ 1  is then addressed using toy models in the limiting cases of impulse and adiabatic approximations and using tidal radii for satellites on radial and circular orbits. In an associated paper, we address the subsequent slow convergence from either side to an asymptotic stable cusp with  α≳ 1  . Our analysis thus implies that an inner cusp is enforced when small haloes are typically more compact than larger haloes, as in the CDM scenario, such that enough satellite material makes it intact into the inner halo and is deposited there. We conclude that a necessary condition for maintaining a flat core, as indicated by observations, is that the inner regions of the CDM satellite haloes be puffed up by about 50 per cent such that when they merge into a larger halo they would be disrupted outside the halo core. This puffing up could be due to baryonic feedback processes in small haloes, which may be stimulated by the tidal compression in the halo cores.  相似文献   

9.
Modelling the build-up of haloes is important for linking the formation of galaxies with cosmological models. A simple model of halo growth is provided by Press–Schechter (PS) theory, where the initial field of density fluctuations is smoothed using spherically symmetric filters centred on a given position to obtain information about the likelihood of later collapse on varying scales. In this paper the predicted halo mass growth is compared for three filter shapes: Gaussian, top-hat and sharp k -space. Preliminary work is also presented analysing the build-up of haloes within numerical simulations using a friends-of-friends group finder. The best-fit to the simulation mass function was obtained using PS theory with a top-hat filter. By comparing both the backwards conditional mass function, which gives the distribution of halo progenitors, and the distribution of halo mergers in time, the build-up of haloes in the simulations is shown to be better fitted by PS theory with a sharp k -space filter. This strengthens previous work, which also found the build-up of haloes in simulations to be well matched to PS theory with a sharp k -space filter by providing a direct comparison of different filters and by extending the statistical tools used to analyse halo mass growth. The usefulness of this work is illustrated by showing that the cosmological evolution in the proportion of haloes that have undergone recent merger is predicted to be independent of mass and power spectrum and to only depend upon cosmology. Recent results from observations of field galaxies are shown to match the evolution expected, but are not sufficiently accurate to distinguish usefully between cosmological parameters.  相似文献   

10.
In this paper we describe the Bayesian link between the cosmological mass function and the distribution of times at which isolated haloes of a given mass exist. By assuming that clumps of dark matter undergo monotonic growth on the time-scales of interest, this distribution of times is also the distribution of 'creation' times of the haloes. This monotonic growth is an inevitable aspect of gravitational instability. The spherical top-hat collapse model is used to estimate the rate at which clumps of dark matter collapse. This gives the prior for the creation time given no information about halo mass. Applying Bayes' theorem then allows any mass function to be converted into a distribution of times at which haloes of a given mass are created. This general result covers both Gaussian and non-Gaussian models. We also demonstrate how the mass function and the creation time distribution can be combined to give a joint density function, and discuss the relation between the time distribution of major merger events and the formula calculated. Finally, we determine the creation time of haloes within three N -body simulations, and compare the link between the mass function and creation rate with the analytic theory.  相似文献   

11.
We study the formation of tidal tails in pairs of merging disc galaxies with structural properties motivated by current theories of cold dark matter (CDM) cosmologies. In a recent study, Dubinski, Mihos & Hernquist showed that the formation of prominent tidal tails can be strongly suppressed by massive and extended dark haloes. For the large halo-to-disc mass ratio expected in CDM cosmologies their sequence of models failed to produce strong tails like those observed in many well-known pairs of interacting galaxies. In order to test whether this effect can constrain the viability of CDM cosmologies, we construct N ‐body models of disc galaxies with structural properties derived in analogy to the recent analytical work of Mo, Mao & White. With a series of self-consistent collisionless simulations of galaxy–galaxy mergers we demonstrate that even the discs of very massive dark haloes have no problems developing long tidal tails, provided the halo spin parameter is large enough. For our class of models, the halo-to-disc mass ratio is not a good indicator of the ability to produce tails. Instead, the relative size of disc and halo or, alternatively, the ratio of circular velocity to local escape speed at the half mass radius of the disc is a more useful criterion. This result holds in all CDM models. While tidal tails can provide useful information on the structure of galaxies, it thus appears unlikely that they are able to constrain the values of the cosmological parameters within these models.  相似文献   

12.
We compute the specific angular momentum distributions for a sample of low-mass disc galaxies observed by Swaters. We compare these distributions to those of dark matter haloes obtained by Bullock et al. from high-resolution N -body simulations of structure formation in a ΛCDM universe. We find that although the disc mass fractions are significantly smaller than the universal baryon fraction, the total specific angular momenta of the discs are in good agreement with those of dark matter haloes. This suggests that discs form out of only a small fraction of the available baryons, but yet manage to draw most of the available angular momentum. In addition we find that the angular momentum distributions of discs are clearly distinct from those of the dark matter; discs lack predominantly both low and high specific angular momenta. Understanding these findings in terms of a coherent picture for disc formation is challenging. Cooling, feedback and stripping, which are the main mechanisms to explain the small disc mass fractions found, seem unable to simultaneously explain the angular momentum distributions of the discs. In fact, it seems that the baryons that make up the discs must have been born out of angular momentum distributions that are clearly distinct from those of ΛCDM haloes. However, the dark and baryonic mass components experience the same tidal forces, and it is therefore expected that they should have similar angular momentum distributions. Therefore, understanding the angular momentum content of disc galaxies remains an important challenge for our picture of galaxy formation.  相似文献   

13.
N -body simulations of cold dark matter (CDM) have shown that, in this hierarchical structure formation model, dark matter halo properties, such as the density profile, the phase-space density profile, the distribution of axial ratio, the distribution of spin parameter and the distribution of internal specific angular momentum, follow 'universal' laws or distributions. Here, we study the properties of the first generation of haloes in a hot dark matter (HDM) dominated universe, as an example of halo formation through monolithic collapse. We find all these universalities to be present in this case also. Halo density profiles are very well fit by the Navarro, Frenk & White profile over two orders of magnitude in mass. The concentration parameter depends on mass as   c ∝ M 0.2  , reversing the dependence found in a hierarchical CDM universe. However, the concentration–formation time relation is similar in the two cases: earlier forming haloes tend to be more concentrated than their later forming counterparts. Halo formation histories are also characterized by two phases in the HDM case: an early phase of rapid accretion followed by slower growth. Furthermore, there is no significant difference between the HDM and CDM cases concerning the statistics of other halo properties: the phase-space density profile; the velocity anisotropy profile; the distribution of shape parameters; the distribution of spin parameter and the distribution of internal specific angular momentum are all similar in the two cases. Only substructure content differs dramatically. These results indicate that mergers do not play a pivotal role in establishing the universalities, thus contradicting models which explain them as consequences of mergers.  相似文献   

14.
The formation of galaxy clusters in hierarchically clustering universes is investigated by means of high-resolution N -body simulations. The simulations are performed using a newly developed multimass scheme which combines a PM code with a high-resolution N -body code. Numerical effects resulting from time-stepping and gravitational softening are investigated, as well as the influence of the simulation box size and of the assumed boundary conditions. Special emphasis is laid on the formation process and the influence of various cosmological parameters. Cosmogonies with massive neutrinos are also considered. Differences between clusters in the same cosmological model seem to dominate over differences caused by differing background cosmogony. The cosmological model can alter the time evolution of cluster collapse, but the merging pattern remains fairly similar, e.g. the number of mergers and the mass ratio of mergers. The gross properties of a halo, such as its size and total angular momentum, also evolve in a similar manner for all cosmogonies, and can be described using analytical models. It is shown that the density distribution of a halo shows a characteristic radial dependence which follows a power law with a slope of =1 at small radii and =3 at large radii, independent of the background cosmogony or the considered redshift. The shape of the density profiles follows the generic form proposed by Navarro et al. for all hierarchically clustering scenarios, and retains very little information about the formation process or the cosmological model. Only the central matter concentration of a halo is correlated with the formation time and therefore the corresponding cosmogony. We emphasize the role of non-radial motions of the halo particles in the evolution of the density profile.  相似文献   

15.
We use a high-resolution ΛCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of 15, in a  50 h −1 Mpc  volume containing 80 million particles. Our low-redshift results allow us to probe low-σ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth & Tormen mass function provides an excellent match to all of our data except for redshifts of 10 and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 per cent for the  1010–1011 M  haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth & Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high-redshift  ( z ≃ 6) QSOs  , which are thought to be hosted by haloes at 5σ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50 per cent. We test the sensitivity of our results to force accuracy, starting redshift and halo-finding algorithm.  相似文献   

16.
We explore the dependence of the central logarithmic slope of dark matter halo density profiles α on the spectral index n of the linear matter power spectrum P ( k ) using cosmological N -body simulations of scale-free models [i.e. P ( k ) ∝ k n ]. These simulations are based on a set of clear, reproducible and physically motivated criteria that fix the appropriate starting and stopping times for runs, and allow one to compare haloes across models with different spectral indices and mass resolutions. For each of our simulations we identify samples of well-resolved haloes in dynamical equilibrium and we analyse their mass profiles. By parametrizing the mass profile using a 'generalized' Navarro, Frenk & White profile in which the central logarithmic slope α is allowed to vary while preserving the r −3 asymptotic form at large radii, we obtain preferred central slopes for haloes in each of our models. There is a strong correlation between α and n , such that α becomes shallower as n becomes steeper. However, if we normalize our mass profiles by r −2, the radius at which the logarithmic slope of the density profile is −2, we find that these differences are no longer present. This is apparent if we plot the maximum slope     as a function of r / r −2– we find that the profiles are similar for haloes forming in different n models. This reflects the importance of concentration, and reveals that the concentrations of haloes forming in steep- n cosmologies tend to be smaller than those of haloes forming in shallow- n cosmologies. We conclude that there is no evidence for convergence to a unique central asymptotic slope, at least on the scales that we can resolve.  相似文献   

17.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

18.
We examine the properties of dark matter haloes within a rich galaxy cluster using a high-resolution simulation that captures the cosmological context of a cold dark matter universe. The mass and force resolution permit the resolution of 150 haloes with circular velocities larger than 80 km s−1 within the cluster virial radius of 2 Mpc (with Hubble constant H 0 = 50 km s−1 Mpc−1). This enables an unprecedented study of the statistical properties of a large sample of dark matter haloes evolving in a dense environment. The cumulative fraction of mass attached to these haloes varies from close to zero per cent at 200 kpc to 13 per cent at the virial radius. Even at this resolution the overmerging problem persists; haloes that pass within 100–200 kpc of the cluster centre are tidally disrupted. Additional substructure is lost at earlier epochs within the massive progenitor haloes. The median ratio of apocentric to pericentric radii is 6:1, so that the orbital distribution is close to isotropic, circular orbits are rare and radial orbits are common. The orbits of haloes are unbiased with respect to both position within the cluster and the orbits of the smooth dark matter background, and no velocity bias is detected. The tidal radii of surviving haloes are generally well-fitted using the simple analytic prediction applied to their orbital pericentres. Haloes within clusters have higher concentrations than those in the field. Within the cluster, halo density profiles can be modified by tidal forces and individual encounters with other haloes that cause significant mass loss —'galaxy harassment'. Mergers between haloes do not occur inside the cluster virial radius.  相似文献   

19.
We consider the sensitivity of the circular-orbit adiabatic contraction approximation to the baryon condensation rate and the orbital structure of dark matter haloes in the Λ cold dark matter (ΛCDM) paradigm. Using one-dimensional hydrodynamic simulations including the dark matter halo mass accretion history and gas cooling, we demonstrate that the adiabatic approximation is approximately valid even though haloes and discs may assemble simultaneously. We further demonstrate the validity of the simple approximation for ΛCDM haloes with isotropic velocity distributions using three-dimensional N -body simulations. This result is easily understood: an isotropic velocity distribution in a cuspy halo requires more circular orbits than radial orbits. Conversely, the approximation is poor in the extreme case of a radial orbit halo. It overestimates the response of a core dark matter halo, where radial orbit fraction is larger. Because no astronomically relevant models are dominated by low angular momentum orbits in the vicinity of the disc and the growth time-scale is never shorter than a dynamical time, we conclude that the adiabatic contraction approximation is useful in modelling the response of dark matter haloes to the growth of a disc.  相似文献   

20.
We investigate the importance of interactions between dark matter substructures for the mass loss they suffer whilst orbiting within a sample of high-resolution galaxy cluster mass cold dark matter (CDM) haloes formed in cosmological N -body simulations. We have defined a quantitative measure that gauges the degree to which interactions are responsible for mass loss from substructures. This measure indicates that interactions are more prominent in younger systems when compared to older more relaxed systems. We show that this is due to the increased number of encounters a satellite experiences and a higher mass fraction in satellites. This is in spite of the uniformity in the distributions of relative distances and velocities of encounters between substructures within the different host systems in our sample.
Using a simple model to relate the net force felt by a single satellite to the mass loss it suffers, we show that interactions with other satellites account for ∼30 per cent of the total mass loss experienced over its lifetime. The relation between the age of the host and the importance of interactions increases the scatter about this mean value from ∼25 per cent for the oldest to ∼45 per cent for the youngest system we have studied. We conclude that satellite interactions play a vital role in the evolution of substructure in dark matter haloes and that a significant fraction of the tidally stripped material can be attributed to these interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号