首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
2.
Large-eddy simulation (LES) of a stable atmospheric boundary layer is performed using recently developed dynamic subgrid-scale (SGS) models. These models not only calculate the Smagorinsky coefficient and SGS Prandtl number dynamically based on the smallest resolved motions in the flow, they also allow for scale dependence of those coefficients. This dynamic calculation requires statistical averaging for numerical stability. Here, we evaluate three commonly used averaging schemes in stable atmospheric boundary-layer simulations: averaging over horizontal planes, over adjacent grid points, and following fluid particle trajectories. Particular attention is focused on assessing the effect of the different averaging methods on resolved flow statistics and SGS model coefficients. Our results indicate that averaging schemes that allow the coefficients to fluctuate locally give results that are in better agreement with boundary-layer similarity theory and previous LES studies. Even among models that are local, the averaging method is found to affect model coefficient probability density function distributions and turbulent spectra of the resolved velocity and temperature fields. Overall, averaging along fluid pathlines is found to produce the best combination of self consistent model coefficients, first- and second-order flow statistics and insensitivity to grid resolution.  相似文献   

3.
Large-Eddy Simulation of Stably-Stratified Flow Over a Steep Hill   总被引:1,自引:1,他引:0  
Large-eddy simulation (LES) is used to simulate stably-stratified turbulent boundary-layer flow over a steep two-dimensional hill. To parametrise the subgrid-scale (SGS) fluxes of heat and momentum, three different types of SGS models are tested: (a) the Smagorinsky model, (b) the Lagrangian dynamic model, and (c) the scale-dependent Lagrangian dynamic model (Stoll and Porté-Agel, Water Resour Res 2006, doi:). Simulation results obtained with the different models are compared with data from wind-tunnel experiments conducted at the Environmental Flow Research Laboratory (EnFlo), University of Surrey, U.K. (Ross et al., Boundary-Layer Meteorol 113:427–459, 2004). It is found that, in this stably-stratified boundary-layer flow simulation, the scale-dependent Lagrangian dynamic model is able to account for the scale dependence of the eddy-viscosity and eddy-diffusivity model coefficients associated with flow anisotropy in flow regions with large mean shear and/or strong flow stratification. As a result, simulations using this tuning-free model lead to turbulence statistics that are more realistic than those obtained with the other two models.  相似文献   

4.
山丘地形的陆面过程及边界层特征的模拟   总被引:2,自引:1,他引:2       下载免费PDF全文
将模式NP-89的陆面过程参数化方法应用到北京大学的三维复杂地形中尺度数值模式中, 得到了一个较理想的三维陆面过程及边界层模式, 利用这个改进的三维模式对20 km×20 km范围的山丘地形的陆面过程及边界层特征进行了数值模拟。模拟结果表明, 由于地形阻挡所造成山后的湍流较山前强, 进而造成近地面温度梯度和感热支出小, 最终造成山后的温度比山前的温度明显偏高; 而且随着山高的增加, 这种现象更加明显, 即该模式对山丘地形条件下的陆面过程和大气边界层特征具有较强的模拟能力; 模拟结果合理, 对研究过山气流形成机制、起伏地形大气边界层物理特征和污染物的扩散具有理论和应用价值。  相似文献   

5.
Most natural landscapes are characterized by multiscale (often multifractal) topography with well-known scale-invariance properties. For example, the spectral density of landscape elevation fields is often found to have a power-law scaling behaviour (with a −2 slope on a log–log scale) over a wide span of spatial scales, typically ranging from tens of kilometres down to a few metres. Even though the effect of topography on the atmospheric boundary layer (ABL) has been the subject of numerous studies, few have focussed on multiscale topography. In this study, large-eddy simulation (LES) is used to investigate boundary-layer flow over multiscale topography, and guide the development of parametrizations needed to represent the effects of subgrid-scale (SGS) topography in numerical models of ABL flow. Particular emphasis is placed on the formulation of an effective roughness used to account for the increased aerodynamic roughness associated with SGS topography. The LES code uses the scale-dependent Lagrangian dynamic SGS model for the turbulent stresses and a terrain-following coordinate transformation to explicitly resolve the effects of the topography at scales larger than the LES resolution. The terrain used in the simulations is generated using a restricted solid-on-solid landscape evolution model, and it is characterized by a −2 slope of the elevation power spectrum. Results from simulations performed using elevation fields band-pass filtered at different spatial resolutions indicate a clear linear relation between the square of the effective roughness and the variance of elevation.  相似文献   

6.
Flow over Hills: A Large-Eddy Simulation of the Bolund Case   总被引:6,自引:6,他引:0  
Simulation of local atmospheric flows around complex topography is important for several applications in wind energy (short-term wind forecasting and turbine siting and control), local weather prediction in mountainous regions and avalanche risk assessment. However, atmospheric simulation around steep mountain topography remains challenging, and a number of different approaches are used to represent such topography in numerical models. The immersed boundary method (IBM) is particularly well-suited for efficient and numerically stable simulation of flow around steep terrain. It uses a homogenous grid and permits a fast meshing of the topography. Here, we use the IBM in conjunction with a large-eddy simulation (LES) and test it against two unique datasets. In the first comparison, the LES is used to reproduce experimental results from a wind-tunnel study of a smooth three-dimensional hill. In the second comparison, we simulate the wind field around the Bolund Hill, Denmark, and make direct comparisons with field measurements. Both cases show good agreement between the simulation results and the experimental data, with the largest disagreement observed near the surface. The source of error is investigated by performing additional simulations with a variety of spatial resolutions and surface roughness properties.  相似文献   

7.
This paper presents the dry version of a new large-eddy simulation (LES) model, which is designed to simulate air flow and clouds above highly complex terrain. The model is three-dimensional and nonhydrostatic, and the governing equations are sound filtered by use of the anelastic approximation. A fractional step method is applied to solve the equations on a staggered Cartesian grid. Arbitrarily steep and complex orography can be accounted for through the method of viscous topography. The dynamical model core is validated by comparing the results for a spreading density current against a benchmark solution. The model accuracy is further assessed through the simulation of turbulent flow across a quasi two-dimensional ridge. The results are compared with wind-tunnel data. The method of viscous topography is not restricted to moderately sloped terrain. Compared to models using curvilinear grids, it allows this model to be applied to a much wider range of flows. This is illustrated through the simulation of an atmospheric boundary-layer flow over a surface mounted cube. The results show that the dry model version is able to accurately represent the complex flow in the vicinity of three-dimensional obstacles. It is concluded that the method of viscous topography was successfully implemented into a micrometeorological LES model. As will be shown in Part II, this allows the detailed study of clouds in highly complex terrain.  相似文献   

8.
The Weather Research and Forecasting (WRF) model can be used to simulate atmospheric processes ranging from quasi-global to tens of m in scale. Here we employ large-eddy simulation (LES) using the WRF model, with the LES-domain nested within a mesoscale WRF model domain with grid spacing decreasing from 12.15 km (mesoscale) to 0.03 km (LES). We simulate real-world conditions in the convective planetary boundary layer over an area of complex terrain. The WRF-LES model results are evaluated against observations collected during the US Department of Energy-supported Columbia Basin Wind Energy Study. Comparison of the first- and second-order moments, turbulence spectrum, and probability density function of wind speed shows good agreement between the simulations and observations. One key result is to demonstrate that a systematic methodology needs to be applied to select the grid spacing and refinement ratio used between domains, to avoid having a grid resolution that falls in the grey zone and to minimize artefacts in the WRF-LES model solutions. Furthermore, the WRF-LES model variables show large variability in space and time caused by the complex topography in the LES domain. Analyses of WRF-LES model results show that the flow structures, such as roll vortices and convective cells, vary depending on both the location and time of day as well as the distance from the inflow boundaries.  相似文献   

9.
地形对边界层影响的有限元数值模式   总被引:2,自引:0,他引:2  
胡非 《气象学报》1990,48(2):129-138
本文在定常和中性层结条件下应用有限元法初步建立了一个能够处理二线复杂地形上边界层问题的数值模式。模式使八节点抛物型等参元,有限元方程组用“波前法”求解。应用模式计算了几种典型地形上的近地层流动。模拟出了风速、气压、湍流动量通量以及湍流交换系数等气象要素的主要分布特征,并将计算结果与有关的观测事实做了比较。  相似文献   

10.
The nonlinear version of the mixed spectral finite difference model of atmospheric boundary-layer flow over topography is reviewed. The relations between the stability of the iteration scheme and its relaxation parameter are discussed. Suitable choice of the relaxation factor improves the computational stability on terrain with maximum slope up to 0.5 or 0.6 in certain circumstances. Examples of relatively high slope terrain are used to test the stability. A two-dimensional version of the model is considered. More detailed simulations are studied and analyzed for a comparison with wind-tunnel flow over periodic sinusoidal surfaces. An application on real topography is given for Bolund hill in Roskilde, Denmark.  相似文献   

11.
Large-eddy Simulations of Flow Over Forested Ridges   总被引:4,自引:4,他引:0  
Large-eddy simulations (LES) of flow over a series of small forested ridges are performed, and compared with numerical simulations using a one-and-a-half order mixing length closure scheme. The qualitative and quantitative similarity between these results provides some confidence in the results of recent analytical and numerical studies of flow over forested hills using first-order mixing length schemes. Time series of model velocities at various locations within the canopy allow the application of various experimental techniques to study the turbulence in the LES. The application of conditional analysis shows that the structure of the turbulence over a forested hill is broadly similar to that over flat ground, with sweeps and ejections dominating. Differences are seen across the hill, particularly associated with regions of mean flow separation and recirculation near the summit and in the lee of the hill. Detailed comparison of derived mixing lengths from the LES with the assumed values used in mixing-length closure schemes show that the mixing length varies with location across the hill and with height in the canopy. This is consistent with previous wind-tunnel measurements, and demonstrates that a constant mixing-length assumption is not strictly valid within the canopy. Despite this, the first-order mixing-length schemes do give similar results both for the mean flow and the turbulence in such situations.  相似文献   

12.
The flow solver “3DWind” is used to explore new aspects of the Askervein hill flow case. Previous work has investigated sensitivities to the grid, the inflow boundary profile, the roughness and the turbulence model. Several different linear and non-linear numerical models have also been validated by means of the Askervein hill case. This analysis focuses on the flow sensitivity to the grid spacing, the incident wind direction and the vertical resolution of topographic data. The horizontal resolution is found to be fine enough to cause only minor differences compared to a grid where every second node is removed. The vertical resolution dependence is mainly attributed to the wall functions. Simulations are performed for wind directions 200°, 205°, 210° and 215° at the reference station. The smallest directional biases compared to experimental values along a line through the hilltop are found for the directions 200° and 205°. There are larger wind direction changes along this line through the hilltop in the 200° case than in the 215° case. Still the simulation results give less veering than found in the experimental results, and this is maybe caused by a slightly stable atmosphere. The sensitivity to the vertical resolution of the topographical data is found to be particularly high close to the ground at the top of the hill; this is where the speed-up is most important. Differences decrease with the height from the ground. At higher levels the speed-ups are smaller and caused by terrain formations with larger scales.  相似文献   

13.
Flow over the summit of an isolated hill   总被引:5,自引:0,他引:5  
Observations of the mean flow and turbulence statistics over the summit of an isolated, roughly circular hill, Nyland hill, are presented, Nyland hill rises 70 m above the surrounding terrain and has a base diameter of about 500 m. The summit of the hill is very smooth and allows representative measurements to be made close to the surface. The flow speed 8 m above the summit is increased by a factor of 2 over the upstream speed 8 m above level terrain, and flow separation occurs in the lee of the hill. The mean velocity profile over the summit shows an increase in velocity with height up to about 2 m and then a near constant velocity between 2 and 16 m. The flow perturbation relative to the upstream profile is thus a maximum at about 2 m. The measurements of turbulence structure show how the influence of the hill depends on the length scale of the turbulent eddies involved. Scales greater than the scale of the hill are modified through the flow speed-up whilst scales shorter than the hill suffer complex changes. The short-scale turbulence over the summit is only in local equilibrium in the lowest fraction of a metre. Above this equilibrium region, there is a complex adjustment towards the rapid distortion dynamics which appear to dominate at heights above about 8 m. The detailed results are compared with previous studies and available theories.  相似文献   

14.
The sensitivity of large-eddy simulation (LES) to the representation of subgrid-scale (SGS) processes is explored for the case of the convective boundary layer (CBL) developing over surfaces with varying degrees of spatial heterogeneity. Three representations of SGS processes are explored: the traditional constant Smagorinsky–Lilly model and two other dynamic models with Lagrangian averaging approaches to calculate the Smagorinsky coefficient (C S ) and SGS Prandtl number (Pr). With initial data based roughly on the observed meteorology, simulations of daytime CBL growth are performed over surfaces with characteristics (i.e. fluxes and roughness) ranging from homogeneous, to striped heterogeneity, to a realistic representation of heterogeneity as derived from a recent field study. In both idealized tests and the realistic case, SGS sensitivities are mostly manifest near the surface and entrainment zone. However, unlike simulations over complex domains or under neutral or stable conditions, these differences for the CBL simulation, where large eddies dominate, are not significant enough to distinguish the performance of the different SGS models, irrespective of surface heterogeneity.  相似文献   

15.

The airborne measurement platform MASC-3 (Multi-Purpose Airborne Sensor Carrier) is used for measurements over a forested escarpment in the Swabian Alps to evaluate the wind field. Data from flight legs between 20 and 200 m above the ground on two consecutive days with uphill (westerly) flow in September 2018 are analyzed. In the lowest 140 m above the ground a speed-up is found with increased turbulence and changes in wind direction directly over the escarpment, whereas in the lowest 20 to 50 m above the ground a deceleration of the flow is measured. Additionally, simulation results from a numerical model chain based on the Weather Research and Forecasting (WRF) model and an OpenFOAM (Open Source Field Operation and Manipulation) model, developed for complex terrain, are compared to the data captured by MASC-3. The models and measurements compare well for the mean wind speed and inclination angle.

  相似文献   

16.
Boundary-layer wind-tunnel flow is measured over isolated ridges of varyingsteepness and roughness. The steepness/roughness parameter space is chosento produce flows that range from fully attached to strongly separated. Measurementsshow that maximum speedup at the hill crest is significantly lower than predictedby linear theory and that recovery in the lee of the hill is much slower for stronglyseparated flow over steep terrain. The measurements also show that behaviour ofthe mean and turbulent components of the flow on the downwind side of the ridgeis fundamentally different between separated and non-separated flows. This suggeststhe dominance of much increased turbulence time and length scales in the lee of thehill in association with a production mechanism that scales with the hill length ratherthan the proximity to the surface as on the windward side of the hill crest.  相似文献   

17.
The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin–Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.  相似文献   

18.
An understanding of how topography, including that covered by a plant canopy, influences the flow and turbulence is important in many meteorological and micrometeorological applications. We revisit the framework of Finnigan and Belcher (Q J Roy Meteorol Soc 130:1–29, 2004) for neutral flow over sinusoidal two-dimensional topography covered by a canopy and present a minor modification that enables a formal match between the forms for the flow within and above the canopy, including within the deep canopy. The modification then allows the easy extension of the framework to generalised two-dimensional topography. The revised framework affirms the conclusions of Finnigan and Belcher (op.cit.); above the canopy the flow perturbations are maximised near to where the perturbation pressure is a minimum, whereas deep within the canopy the flow perturbations are maximised when the streamwise gradient of the perturbation pressure is largest. However, the extension to general topography strongly illustrates that it is the pressure perturbation, not the hill shape directly, that controls the magnitude and location of the topographic impacts on the flow. For isolated ridges with a plateau, the flow perturbations above the canopy maximise, not at the ridge crest, but where the hill curvature is largest. Multiple recirculation regions can also exist within the canopy, as determined by the streamwise gradient of the pressure perturbation. These results indicate that knowledge of the terrain over a larger area than hither-to-thought is required to assess whether the use of micrometeorological techniques is appropriate at individual sites.  相似文献   

19.
An important challenge in large-eddy simulationsof the atmospheric boundarylayer is the specification of the subgrid-scale(SGS) model coefficient(s)and, in particular, how to account for factorssuch as position in the flow,grid/filter scale and atmospheric stability.A dynamic SGS model (thatassumes scale invariance of the coefficients)is implemented in simulationsof a neutral boundary layer with a constantand uniform surface flux of apassive scalar. Results from our simulationsshow evidence that the lumpedcoefficient in the eddy-diffusion modelcomputed with the dynamic proceduredepends on scale. This scale dependence isstronger near the surface, and itis more important for the scalar than for thevelocity field (Smagorinskycoefficient) due to the stronger anisotropicbehaviour of scalars. Based onthese results, a new scale-dependent dynamicmodel is developed for theeddy-diffusion lumped coefficient. The newmodel, which is similar to theone proposed earlierfor the Smagorinsky coefficient,is fully dynamic, thus not requiring anyparameter specification or tuning.Simulations with the scale-dependent dynamicmodel yield the expected trendsof the coefficients as functions of positionand filter/grid scale.Furthermore, in the surface layer the newmodel gives improved predictionsof mean profiles and turbulence spectra ascompared with the traditionalscale-invariant dynamic model.  相似文献   

20.
A three-level model system for the prediction of local flows in mountainous terrain is described. The system is based upon an operational weather prediction model with a horizontal grid spacing of about 10 km. The large-scale flow is transformed to a more detailed terrain, first by a mesoscale model with grid spacing of about 1 km, and then by a local-scale model with a grid spacing of about 0.2 km. The weather prediction model is hydrostatic, while the two other models are non-hydrostatic. As a case study the model system has been applied to estimate wind and turbulence over Várnes airport, Norway, where data on turbulent flight conditions were provided near the runway. The actual case was chosen due to previous experiences, which indicate that south-easterly winds may cause severe turbulence in a region close to the airport. Local terrain induced turbulence seems to be the main reason for these effects. The predicted local flow in the actual region is characterized by narrow secondary vortices along the flow, and large turbulent intensity associated with these vortices. A similar pattern is indicated by the sparse observations, although there seems to be a difference in mean wind direction between data and predictions. Due to fairly coarse data for sea surface temperature, errors could be induced in the turbulence damping via the Richardson number. An adjustment for this data problem improved the predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号