首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
CRTS Ⅰ型双块式无砟轨道施工精调质量直接影响到高速铁路轨道的平顺度,提高精调精度减小轨排中线、高程偏差值是降低长轨静态精调扣件更换率最有效的措施,结合宝兰高铁无砟轨道施工精调实践,对轨排施工精调中几个常见问题产生的原因进行了分析,总结了消除和预防类似问题的技术措施,对提高无砟轨道施工质量,降低无砟轨道施工成本具有一定的参考和借鉴意义.  相似文献   

2.
采用惯性导航系统与全球导航卫星系统的轨道快速检测系统对轨道进行往返精密测量后,利用长轨精调软件进行内业数据处理得到轨道精调方案。对于相同的原始数据,受软件操作人员的技术水平和经验影响,即使满足各项指标要求,不同操作人员得到的精调方案也会不同。因此,有必要对不同的轨道精调方案进行定量评价。本文首先提出了适用于评价精调方案的5个指标,同时分析给出了各指标限差阈值,在满足轨道平顺性指标限差的条件下,引入“功效系数法”对指标进行无量纲化处理,并以“特征值”法对指标赋权,最后以加权线性和法对指标合成,从而对轨道精调方案进行定量评价。实例验证表明,该评价指标及评价方法能够对不同操作人员所给的精调方案进行合理、有效的评价。  相似文献   

3.
长钢轨应力放散锁定后的轨道精调是确保客运专线无砟轨道几何形位高平顺性的必要阶段。精调作业常通过轨道几何状态测量仪采集轨道三维数据,利用配套精调软件包手动模拟得出调整方案,指导轨道精调。模拟精调中常常反复调整才能使基准轨平顺性达标,自动化程度低。基准轨平顺性满足要求后,仅依靠轨距、轨距变化率、水平和扭曲等参数控制非基准轨,会降低其平顺性。为此,提出利用L1范数最优原则进行双轨精调的优化算法(optimization algorithm of double-rails track fine adjustment,OADTFA),建立顾及基准弦端点偏差的平顺性约束,增加非基准轨轨向、高低约束,采用逐点移动基准弦分组调整策略,由单纯形法求解优化调整量。实测数据测试结果表明,OADTFA可实现钢轨自动化精调,确保双轨任意处几何形位高平顺性,自动给出最优左右轨调整量。  相似文献   

4.
随着城市轨道交通建设向城际交通发展,地铁列车运行时速也大大提高,轨道工程面对列车运行平顺性和乘坐舒适性等方面有了更高的要求,而传统铺轨基标的测量方法很难满足轨道高平顺性和高稳定性的要求。通过将高铁CPIII测量技术结合无砟轨道铺轨测量、轨道精调检测等技术引入到城市地铁的轨道施工中,研究了城市地铁轨道施工中CPIII控制网的布设、观测和数据处理方法,提出了基于CPIII测量技术的整体道床轨排粗调、轨排精调、轨道精调技术,并在南京地铁某城际线轨道工程实例中加以验证。通过轨道静态检测和动态检测结果显示,铺设的轨道均满足设计及规范要求,实现了南京地铁某城际线轨道的精调。通过对两种测量技术铺设轨道的平顺性检测结果比较,可知采用基于CPIII的地铁轨道测量技术比传统的铺轨基标方式具有精度高、安全可靠、有利于地铁轨道施工高效开展以及有利于运营后轨道的检测与维护等优点。  相似文献   

5.
高速铁路轨道中长波平顺性参数的计算方法是高速铁路轨道精测与精调的核心技术,现有的中长波平顺性参数计算多采用以轨道点法向偏移量代替矢距差(即设计矢距与实测矢距之差)的近似计算方法。由于该算法忽略实测弦线端点偏差的影响,导致轨道实测轨向(高低)计算结果与严密算法计算结果存在一定的偏差。鉴于现有近似算法存在准确度低的缺点,文中在现有近似算法的基础上提出一种改进算法,并通过对轨道实测坐标数据的计算和对比,验证改进算法的可行性和准确性,并提高高铁轨道中长波平顺性参数计算结果的准确度,可为高速铁路轨道精测与精调提供参考。  相似文献   

6.
李武 《测绘工程》2012,21(3):35-38
轨道精密调整工作的主要内容是采用高精度全站仪配合轨检小车,对轨道静态几何参数及轨道的几何位置参数进行采集,并给出轨道调整量,以指导轨道精调施工。在一些相关的轨检小车说明书及工程论文中,对轨检小车的外业操作作业方法及注意事项描述较多,对轨检小车测量系统的设计数据录入及模拟调整等内容描述则较为简略。文中以南方高速铁路轨道检测系统为例,简述高速铁路轨道精调工作中轨检小车测量系统的设计数据录入及模拟调整的具体操作方法和相关的注意事项。  相似文献   

7.
高铁轨道中长波不平顺值是评价轨道几何状态的重要参数,也是指导高速铁路现场轨道精调作业的主要依据,是列车安全高速运行的重要指标之一。本文针对目前高铁轨道矢距差法计算不平顺值,存在计算复杂、计算与检测弦起点的选择有关、结果并不唯一、计算值与实际轨道精调作业调整量方向不一致等问题,提出基于坐标绝对偏差法计算轨道中长波不平顺值的新方法。利用该方法不仅使轨道中长波不平顺值的计算变得简单,而且还与轨道检测弦的起点无关,计算结果唯一,并能满足工程实际需要。  相似文献   

8.
基于GRP1000的无砟轨道精调测量研究   总被引:2,自引:0,他引:2  
通过对GRP1000轨检小车测量原理、作业方法、影响精调精度因素、控制措施,以及我国高铁无砟轨道检测应用实施情况的研究,表明GRP1000轨检小车作为一种现代先进的轨检设备,适合我国高铁无砟轨道精调测量。使用该先进轨检设备对提高施工效率、保障施工质量具有重要作用。  相似文献   

9.
以我国首例磁悬浮--上海磁悬浮工程为例,论述磁悬浮工程中轨道梁的精调定位.  相似文献   

10.
以高铁和城市轨道交通工程无砟轨道精密技术为依托,详细介绍了轨道几测量仪的总体思路、技术特点、参数指标、数学模型、关键技术研究与实践,其中对开发的测量软件、轨道检测小车等装备测量数据稳定性进行测试,并做了测量精度的分析比较,该研究成果已在多个工程项目的无砟轨道施工精调测量中得到应用,各项测量精度和技术性能指标良好,为今后无砟轨道工程施工提供有效保障和技术支撑,社会、技术、经济效益显著。  相似文献   

11.
针对现有的CRTSⅢ型轨道板检测方法效率低下、设备组装复杂、部分还需人工操作等不足,基于三维点云数据实现了轨道板外形尺寸的高精度快速检测。利用轨道板标准三维模型建立相关检测特征,在完成轨道板三维点云数据相关预处理后,将点云数据精确配准至标准三维模型,利用模型上已建立的特征拟合计算轨道板表面点云数据的检测特征,获得轨道板各检测指标的测量值;计算测量值与标准三维模型设计尺寸之间的偏差,从而实现轨道板外形尺寸的快速检测。实验表明,与常规的检测手段相比,该方法具有检测精度高、速度快、检测结果稳定可靠、检测项目齐全等优点,具有良好的应用前景。  相似文献   

12.
深入研究了CRTSⅢ型板式(简称Ⅲ型)无砟轨道布板设计关键技术,设计并研制了基于C/S(客户端/服务器)结构模式的Ⅲ型无砟轨道布板设计系统,可以实现双线铁路并行等高段的布板计算并获得轨道板各承轨台轨顶中心(简称承轨台定位点)的线路空间三维坐标信息。文中阐述了双线铁路Ⅲ型无砟轨道布板设计关键技术和系统设计实现流程,对我国Ⅲ型无砟轨道技术体系向智能化发展具有一定借鉴和参考意义。  相似文献   

13.
张利刚  高山 《测绘工程》2022,31(1):52-57
高速铁路轨道的稳定性和平顺性是高速铁路正常运营的关键,因此对运营期高速铁路的轨下结构持续地开展变形监测是十分必要的.当前我国对轨道板变形的检测主要是依靠人工肉眼观察式的现场检查和常规水准测量方式进行监测,效率低下,难以在有限的天窗时间内完成辖区内轨道结构的全覆盖检测.基于此,从理论分析和实验测试两方面探讨机械光栅式测缝...  相似文献   

14.
简要介绍了高速铁路CRTSⅡ型板式无砟轨道加密基标测量方法及技术要求,详细分析了加密基标平面测量误差,并对加密基标测量提出了一些有益的建议.  相似文献   

15.
高速铁路轨道必须保持高平顺性、高稳定性和高可靠性,这直接关系到高速列车高速、安全且平稳运行。高速铁路轨道测量至少包括控制测量、线路测量和变形测量等工作。传统高速铁路轨道测量方法存在测量周期长、维护成本高、检测效率低等问题。为此,本文提出了一种基于全球导航卫星系统(global navigation satellite system,GNSS)/惯性导航系统(inertial navigation system,INS)多传感器组合的高速铁路轨道测量方法,并研制了相应的轨道测量系统。本文详细介绍了其主要构成和方法流程,并在实际高速铁路轨道精调工程中进行了应用示范。结果表明:该系统实现了轨道路基变形监测和高速铁路轨道不平顺绝对测量与相对测量的一体化,其轨道横向偏差精度2 mm、垂向偏差精度2 mm,变形点水平方向精度1 mm、垂直方向精度1.5 mm,显著提高了测量效率。  相似文献   

16.
高分辨率航空遥感数据中铁路轨道线性特征明显,可以直接用于铁路轨道的精细提取。首先根据铁路路基光谱、局域地形等特征,基于机载LiDAR数据建立一种面向对象的铁路区域提取算法;进一步通过数学形态学处理消除干扰因素的影响,选取适当的影像波段进行掩模提取图像中的铁路区域,采用基于高斯平滑和微分几何的线性地物提取算法初步提取铁路轨道线。在噪声消除、线段连接的基础上建立轨道平行线算法模型,从而实现轨道信息的准确提取。实验结果证明上述方法的有效性,轨道提取精度达到94.6%以上。  相似文献   

17.
智能型全站仪结合边角后方交会原理在高速铁路测量工作中得到广泛应用,其在CPⅢ高精度铺轨控制网的基础上进行自由重叠设站的精度能满足高铁测量的精度要求。在板式无碴轨道底板放样和轨道板安装时,可以根据仪器误差参数计算得出每个测站进行放样时误差不超限的最远放样距离,供测量人员参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号