首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory measurements of seismic wave velocities and electrical properties of Apollo lunar samples and similar material of terrestrial origin are discussed in this paper. Measurements of the electrical properties show that in the frequency range above a few hundred Hz the outer region of the Moon may be considered as a low loss dielectric. This observation supports a longstanding speculation that dry, powdered rocks in which the dielectric loss tangent is frequency-independent over a wide range of frequency are present in the uppermost lunar surface layers. The surface layers of the Moon are likely to have an extremely low electrical conductivity. Thus future electromagnetic probing of the Moon to a few hundred kilometer depth is possible in the few kHz frequency range. Based on ultrasonic experiments with pressure as a variable, we next present the elastic constants and equations of state of lunar materials and characteristic dispersion of seismic wave velocities of the Moon. We find thatP andS wave velocities increase sharply within the first 30 km depth and then level off gradually. Combining this observation with lunar seismic and geophone data, we believe that the first 30 km of the Moon may be interpreted as a scattering region. If H2O exists on the Moon, H2O may occur at some shallow depth beneath the outermost surface layer in solid ice interlocking cracks and pores and mineral grains. The rocks in this permafrost state have relatively low seismic velocity and highQ. If permafrost does exist, we would expect a wide range of electrical conductivity and dielectric constant. Future electromagnetic probing of the Moon should yield very usefull information on the physical state of the lunar interior; when this electrical information is combined with the seismic information, we should learn much more about the internal constitution and the state of the Moon than is known today.  相似文献   

2.
The determination of the internal structure of the Moon using bulk waves is largely complicated due to inhomogeneities in its uppermost layer. We investigate the possibility of studying the Moon’s interior by a sensing method using the free oscillations of the Moon. The spectrum of the free oscillations is calculated for two current models of the internal structure of the Moon derived from the analysis of the Apollo seismic network data, based on new methods: the MG (Garsia, et al., 2011) and MW (Weber, et al., 2011) models. In contrast to the MG model, the MW model includes a solid inner core. In this latter model, we estimate how the shear modulus of the inner core affects the structure of the oscillations.  相似文献   

3.
New Trends in the Development of the Lunar Physical Libration Theory   总被引:4,自引:0,他引:4  
A review of the modern state of the lunar libration theory is presented. A significant progress in the lunar investigation is achieved due to the simultaneous processing of results of the satellite Doppler tracing and of the lunar laser ranging. The data evidencing existence of a small iron core in the Moon are discussed. In this connection, the further development of the theory of rotation of the Moon presents the study of internal structure and dynamics of a lunar body. A model of a two-layer Moon can have a very advanced application to explain some observed phenomena and to be as a first approach in the modelling of internal processes determining the lunar rotation.  相似文献   

4.
The interpretation of planetary anomalies in the gravity fields of Mars and the Moon in relationship to their inhomogeneous internal structure is considered. The Martian and lunar gravity field models up to order and degree 20, three-layer (crust, mantle, core) model parameters, and planetary parameters have been used as input data. Models of the three-dimensional density distribution have been constructed for Mars and the Moon. The maps of horizontal density inhomogeneities at depths of 50, 100, and 1700 km for Mars and 60, 100, and 1400 km for the Moon are interpreted.  相似文献   

5.
Farside explorer: unique science from a mission to the farside of the moon   总被引:4,自引:0,他引:4  
Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth–Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar-powered landers and a science/telecommunications relay satellite to be placed in a halo orbit about the Earth–Moon L2 Lagrange point. One lander would explore the largest and oldest recognized impact basin in the Solar System— the South Pole–Aitken basin—and the other would investigate the primordial highlands crust. Radio astronomy, geophysical, and geochemical instruments would be deployed on the surface, and the relay satellite would continuously monitor the surface for impact events.  相似文献   

6.
7.
We study the dynamics of a viscoelastic body whose shape and position evolve due to the gravitational forces exerted by a pointlike planet. We work in the quadrupole approximation. We consider the solution in which the center of mass of the body moves on a circular orbit, and the body rotates in a synchronous way about its axis, so that it always shows the same face to the planet as the Moon does with the Earth. We prove that if any internal deformation of the body dissipates some energy, then such an orbit is locally asymptotically stable. The proof is based on the construction of a suitable system of coordinates and on the use of LaSalle??s principle. A large part of the paper is devoted to the analysis of the kinematics of an elastic body interacting with a gravitational field. We think this could have some interest in itself.  相似文献   

8.
Isamu Matsuyama 《Icarus》2013,222(1):411-414
The unusual shape of the Moon given its present rotational and orbital state has been explained as due to a fossil figure preserving a record of remnant rotational and tidal deformation (Jeffreys, H. [1915]. Mem. R. Astron. Soc. 60, 187–217; Lambeck, K., Pullan, S. [1980]. Phys. Earth Planet. Interiors 22, 29–35; Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652–655). However, previous studies assume infinite rigidity and ignore deformation due to changes in the rotational and orbital potentials as the Moon evolves to the present state. We interpret the global lunar figure with a physical model that takes into account this deformation. Although the Moon deforms in response to rotational and orbital changes, a fossil figure capable of explaining the observed figure can be preserved by an elastic lithosphere.  相似文献   

9.
The presence of craters with central peaks on the ice satellites of Saturn implies that their surface elastic strength is comparable to that of the Moon, Mars, and Mercury which have central peak craters, rather than that of the Jovian ice satellites Ganymede and Callisto which do not have central peak craters.  相似文献   

10.
I discuss the relation between the internal structure of the Moon and the radial distribution of the moonquake foci. I believe that the important factor conditioning the radial distribution is the fact that the rigidity of the lunar material decreases with increasing depth. Using a two-layer model, solutions of the elasticity equations are found for the cases of a uniform surface load and of a uniform radial body force. The results show that when the inner sphere is less rigid than the outer shell, the maximum sheer stress is located near the boundary of the two components, thus explainning why the moonquakes are mostly deep quakes. The results also suggest that a liquid core exists in the Moon.  相似文献   

11.
A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron–sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe–S solutions at sulfur concentrations of 0–18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon’s outer Fe–S core (~5 GPa/2000 K), which contains 6–16 at % (3.5–10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3–7.0 g/cm3 and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the Apollo observations (Weber et al., 2011) to show a good consistency of the velocity of P-waves in the Moon’s liquid core whereas the thermodynamic density of the Fe–S core is not consistent with the seismic models with ρ = 5.1–5.2 g/cm3 (Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5–10 wt %, the density of the Fe–S melt is 20–30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon’s outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon’s mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter’s Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of the Fe–S liquid cores. The geophysical and geochemical characteristics of the internal structure of the Moon and Jupiter’s moons are compared. The calculations of the adiabatic gradient at the PT conditions for the Fe–S cores of the Moon, Io, Europa, and Ganymede suggest the top-down crystallization of the core (Fe-snow scenario).  相似文献   

12.
《Planetary and Space Science》1999,47(8-9):1051-1060
It is planned that the LUNA-GLOB spacecraft will deliver an orbiter and 14 landers to the Moon.The schematic diagram of the spacecraft flight to the Moon is shown in Fig. 1
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
Fig. 1. Schematic diagram of the LUNA-GLOB SC flight to the Moon.
. The flight time is estimated at 4.5 days. Some 33 h before the spacecraft approaches the Moon a container with 10 small high-velocity penetrators (SHVP) will be separated from the spacecraft. It will continue the flight to the Moon autonomously. When the container is at a close distance to the Moon it will intensively rotate, and the penetrators will be separated from it. They will continue their flight to the Moon, and at a rate of 2.6 km⧸s, they will penetrate the surface.Then, two large penetrators (LP) will separate and continue the flight autonomously. In due time they will decelerate and penetrate the surface at a rate of 80–100 m⧸s.Finally, after leaving the satellite orbit the polar station (PS) will land to the South Polar Region at a rate of 80–100 m⧸s.All 12 penetrators, which will be dropped from the spacecraft, have seismometers. They are intended for the research into the internal structure of the Moon that is one of the main scientific objectives of the project. The (PS) accommodates a complex of instruments intended for the solution of another objective of the project: the search for volatiles.  相似文献   

13.
The basic geochemical model of the structure of the Moon proposed by Anderson, in which the Moon is formed by differentiation of the calcium, aluminium, titanium-rich inclusions in the Allende meteorite, is accepted, and the conditions for formation of this Moon within the solar nebula models of Cameron and Pine are discussed. The basic material condenses while iron remains in the gaseous phase, which places the formation of the Moon slightly inside the orbit of Mercury. Some condensed metallic iron is likely to enter the Moon in this position, and since the Moon is assembled at a very high temperature, it is likely to have been fully molten, so that the iron can remove the iridium from the silicate material and carry it down to form a small core. Interactions between the Moon and Mercury lead to the present rather eccentric Mercury orbit and to a much more eccentric orbit for the Moon, reaching past the orbit of the Earth, establishing conditions which are necessary for capture of the Moon by the Earth. In this orbit the Moon, no longer fully molten, will sweep up additional material containing iron oxide. This history accounts in principle for the two major ways in which the bulk composition of the Moon differs from that of the Allende inclusions.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

14.
The paper briefly describes the purpose and features of the Japanese project ILOM (In-situ Lunar Orientation Measurement) in which it is planned to install the zenith telescope with a CCD lens on one of the poles of the Moon for the observation of stars in order to determine the physical libration of the Moon (PhLM). The studies presented in this paper are the result of the first stage of the theoretical support of the project:
  1. The compilation of the list of stars within the field of view of the telescope during the precessional motion of the lunar pole.
  2. Modeling and analysis of the behavior of stellar tracks during the observation period.
  3. Simulation and testing of the sensitivity of the measured selenographic star coordinates to changes in the parameters of the dynamic model of the Moon and the elastic parameters of the lunar body.
Direct and inverse PhLM problems are discussed. Within the scope of the direct problem visible “daily parallels” and one-year star tracks are calculated. Their behavioral features when observed from the lunar surface are shown. At this stage of the simulation selenographic star coordinates for the four models of the gravitational field of the Moon have been compared, i.e., the model constructed on the basis of the lunar laser ranging (LLR), GLGM-2, LP150Q, and SGM100h. It is shown that even when comparing modern models LP150Q and SGM100h stellar tracks differ from the arc by more than 10 ms of arc. At the stage of the inverse problem, the manifestation of viscoelastic properties of the Moon in selenographic coordinates has been studied. In the spectrum of the simulated residual differences harmonics have been identified which can serve as indicators to refine parameters, Love number k 2 and the delay time characterizing the viscous properties of the lunar body.  相似文献   

15.
The residual dipole moment of the outer spherical shell of the Moon, magnetized in the field of an internal dipole is calculated for the case when the permeability of the shell differs from unity. It is shown that, using an average value of surface magnetization from returned lunar crystalline rock samples and a global figure for the lunar permeability of 1.012, that a residual moment of the order of 1015 to 1016 Am2 is expected. This value is some two or three orders of magnitude lower than the moment for a shell magnetized in an external uniform field and is of the same order as the upper limit of the residual moment detected by Russellet al. (1974). At present the magnetic data and the thermal state of the Moon are not known with sufficient accuracy to distinguish between a crust magnetized in an internal dipole field of constant polarity and a crust magnetized in the dipole field of a self-reversing core dynamo. Refined measurements of the relevant parameters together with the theory presented in this paper could enable these two possibilities to be distinguished.  相似文献   

16.
The Moon is represented as an inhomogeneous spherical body in a steady thermal state. Radioactive heat sources are supposed distributed in a manner which is consistent both with the total measured heat flux near the surface and with the broad seismic evidence. Surface concentrations of uranium and thorium are those suggested by the study of Apollo 11 samples. The resultant internal temperature profile allows the details of Sonett's electrical conductivity profile to be understood if it is accepted that the Moon was not cold 4.5 × 109 yr ago. It would appear further that at least one of the maria was formed by the impact of planetesimals.  相似文献   

17.
夏一飞  萧耐园 《天文学报》2001,42(3):266-271
采用较完善的地球模型PREM,通过求解弹性体的基本运动方程,得到形变位移矢量,由此分别计算出因日月引潮力势和地球自转离心力势引起的地球的弹性形变能,它将为弹性地球运动的Hamilton表达式提供摄动项的量级估计,并将是理论上探讨地月系演化的一个重要方面。  相似文献   

18.
A two-component theoretical model of the physical libration of the Moon in longitude is constructed with account taken of the viscosity of the core. In the new version, a hydrodynamic problem of motion of a fluid filling a solid rotating shell is solved. It is found that surfaces of equal angular velocity are spherical, and a velocity field of the fluid core of the Moon is described by elementary functions. A distribution of the internal pressure in the core is found. An angular momentum exchange between the fluid core and solid mantle is described by a third-order differential equation with a right-hand side. The roots of a characteristic equation are studied and the stability of rotation is proved. A libration angle as a function of time is found using the derived solution of the differential equation. Limiting cases of infinitely large and infinitely small viscosity are considered and an effect of lag of a libration phase from a phase of action of an external moment of forces is ascertained. This makes it possible to estimate the viscosity and sizes of the lunar fluid core from data of observations.  相似文献   

19.
In the IERS Standards (1989), for the Moon the adopted value of the tide Love number, k 2, is equal to 0.0222. In this paper using the latest geodetic parameters of the Moon a group of internal structure models are constructed for this celestial body (see Table V), then the dependence of the Moon's core size on calculated value of k 2 is explored. The obtained results indicate that the second degree Love number, k 2 = 0.02664, of the lunar model 91–04 is near its observed value (0.027 ± 0.006). This implies that the Moon may possess an outer core of 660 km radius and of 300 kbar mean rigidity. With the same method the static Love numbers from degree 2 to 30 are computed for the terrestrial planets — Mercury, Venus, and Mars (see Table VII), and the influence of some parameters (such as the rigidity) of the outer core on low degree Love numbers is discussed. Finally, the likely range of the second degree Love numbers is determined for the terrestrial planets (see Table XI). It seems that if low degree Love numbers of a terrestrial planet can be detected in the future space explorations, there is some possibility to improve the planetary internal structure model. For example, as soon as space techniques yield an observed value of k 2 > 0.10 for Mercury, there will be reason to anticipate that a partly melted iron core exists in this planet.  相似文献   

20.
In order to generate an analytical theory of the motion of the Moon by considering planetary perturbations, a procedure of general planetary theory (GPT) is used. In this case, the Moon is considered as an addition planet to the eight principal planets. Therefore, according to the GPT procedure, the theory of the Moon’s orbital motion can be presented in the form of series with respect to the evolution of eccentric and oblique variables with quasi-periodic coefficients, which are the functions of mean longitudes for principal planets and the Moon. The relationship between evolution variables and the time is determined by a trigonometric solution for the independent secular system that describes the secular motion of a perigee and the Moon node by considering secular planetary inequalities. Principal planetary coordinates required for generating the theory of the motion of the Moon includes only Keplerian terms, the intermediate orbit, and the linear theory with respect to eccentricities and inclinations in the first order relative to the masses. All analytical calculations are performed by means of the specialized echeloned Poisson Series Processor EPSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号