首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On the basis of our multiwavelength observations made with the one-dimensional RATAN-600 radio telescope, we study the inversion of the circular polarization in the solar microwave emission at different frequencies. The inversion is detected in the emission of flare-producing active regions (FPARs) at various stages of their development, starting from the pre-flare stage. During the latest 23rd solar cycle maximum, numerous FPARs revealed spectral inhomogeneities in their polarized microwave radiation (Bogod and Tokhchukova, 2003, Astron. Lett. 29, 263). Here, we discuss a particular case of such inhomogeneities, the frequency-dependent double inversion of the sign of circular polarization, which probably reflects some essential processes in FPARs. We consider several mechanisms for the double inversion: linear interaction of waves in the region of a quasitransverse magnetic field, the propagation of waves through a region of zero magnetic field, the scattering of radio waves on waves of high-frequency plasma turbulence, the influence of the current fibrils on the propagation of the radio emission, and the magnetic “dips,” in which the direction of magnetic field lines changes the sign relative to the observer. All of them have shortcomings, but the last mechanism explains the observations the best.  相似文献   

2.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

3.
It is argued (a) that the onset times of type III radio emission and of the streaming electrons implies that type III bursts in the interplanetary medium are generated predominantly at the fundamental, (b) that in view of recent observations of ion-sound waves in the interplanetary medium the theory of the generation of the bursts should be revised to take account of these waves, and (c) the revised theory favours fundamental emission. A detailed discussion of the effect of ion-sound waves on type III bursts is given. The most important results are: (1) Ion-sound waves cause enhanced (over scattering off thermal ions) fundamental emission. (2) Second harmonic emission is also enhanced for T e> 5 × 105 K, e.g., low in the corona, but is suppressed for T e< 5 × 105 K, e.g., in the interplanetary medium. (3) The bump-in-the-tail instability for Langmuir waves can be suppressed by the presence of ion-sound waves; it may be replaced by an analogous instability in which fundamental transverse waves are generated directly, with no associated second harmonic, but there are unresolved problems with theory for this process. (4) Very low frequency ion-sound waves can scatter type III radiation. (5) Although the ion-sound waves which have been observed are at too high a frequency to be relevant for these processes, it seems likely that ion-sound waves of the required frequencies are present and do play important roles in the generation of type III bursts.  相似文献   

4.
Observations indicate that in plage areas (i.e. in active regions outside sunspots) acoustic waves travel faster than in the quiet Sun, leading to shortened travel times and higher p-mode frequencies. Coupled with the 11-year variation of solar activity, this may also explain the solar cycle variation of oscillation frequencies. While it is clear that the ultimate cause of any difference between the quiet Sun and plage is the presence of magnetic fields of order 100 G in the latter, the mechanism by which the magnetic field exerts its influence has not yet been conclusively identified. One possible such mechanism is suggested by the observation that granular motions in plage areas tend to be slightly “abnormal”, dampened compared to the quiet Sun. In this paper we consider the effect that abnormal granulation observed in active regions should have on the propagation of acoustic waves. Any such effect is found to be limited to a shallow surface layer where sound waves propagate nearly vertically. The magnetically suppressed turbulence implies higher sound speeds, leading to shorter travel times. This time shift Δ τ is independent of the travel distance, while it shows a characteristic dependence on the assumed plage field strength. As a consequence of the variation of the acoustic cutoff with height, Δ τ is expected to be significantly higher for higher frequency waves within the observed regime of 3 – 5 mHz. The lower group velocity near the upper reflection point further leads to an increased envelope time shift, as compared to the phase shift. p-mode frequencies in plage areas are increased by a corresponding amount, Δ ν/ν=ν Δ τ. These characteristics of the time and frequency shifts are in accordance with observations. The calculated overall amplitudes of the time and frequency shifts are comparable to, but still significantly less than (by a factor of 2 to 5), those suggested by measurements.  相似文献   

5.
A number of independent arguments indicate that the toroidal flux system responsible for the sunspot cycle is stored at the base of the convection zone in the form of flux tubes with field strength close to 105 G. Although the evidence for such strong fields is quite compelling, how such field strength can be reached is still a topic of debate. Flux expulsion by convection should lead to about the equipartition field strength, but the magnetic energy density of a 105-G field is two orders of magnitude larger than the mean kinetic energy density of convective motions. Line stretching by differential rotation (i.e., the “Ω effect” in the classical mean-field dynamo approach) probably plays an important role, but arguments based on energy considerations show that it does not seem feasible that a 105-G field can be produced in this way. An alternative scenario for the intensification of the toroidal flux system in the overshoot layer is related to the explosion of rising, buoyantly unstable magnetic flux tubes, which opens a complementary mechanism for magnetic-field intensification. A parallelism is pointed out with the mechanism of “convective collapse” for the intensification of photospheric magnetic flux tubes up to field strengths well above equipartition; both mechanisms, which are fundamentally thermal processes, are reviewed.  相似文献   

6.
Recent numerical investigations of wave propagation near coronal magnetic null points (McLaughlin and Hood: Astron. Astrophys. 459, 641, 2006) have indicated how a fast MHD wave partially converts into a slow MHD wave as the disturbance passes from a low-β plasma to a high-β plasma. This is a complex process and a clear understanding of the conversion mechanism requires the detailed investigation of a simpler model. An investigation of mode conversion in a stratified, isothermal atmosphere with a uniform, vertical magnetic field is carried out, both numerically and analytically. In contrast to previous investigations of upward-propagating waves (Zhugzhda and Dzhalilov: Astron. Astrophys. 112, 16, 1982a; Cally: Astrophys. J. 548, 473, 2001), this paper studies the downward propagation of waves from a low-β to high-β environment. A simple expression for the amplitude of the transmitted wave is compared with the numerical solution.  相似文献   

7.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

8.
太阳射电爆发(Solar Radio Burst, SRB)是太阳高能电子与背景等离子体相互作用产生的感应辐射现象,其多样的动力学谱类型及其复杂的精细结构反映了辐射源区磁等离子体结构状态丰富的物理信息,而相关辐射机制则是解读相关物理信息的关键工具.长期以来,在SRB辐射机制的研究中一直存在着争议不决的两种主要机制,即等离子体辐射机制和电子回旋脉泽(Electron Cyclotron Maser, ECM)辐射机制.近年来,针对传统的ECM辐射机制应用到SRB现象时遇到的一些主要困难,发展了由幂律谱电子低能截止驱动和包含快电子束自生阿尔文波效应的新型ECM驱动模型,并成功应用于解释各类不同SRB动力学谱的形成机制.基于这些新型的ECM辐射模型,系统地总结了ECM辐射机制在各种不同类型SRB现象中的应用,并对它们不同动力学谱结构的形成给出了一致统一的物理解释.  相似文献   

9.
A low-frequency wave is treated as a local oscillation to modulate the guiding center of electrons beam, which is considered as free energy to excite Alfvén waves by a kinetic plasma instability under low-frequency approximation. The nonlinearity of the model is shown by a critical value of the amplitude of the low-frequency wave, and Alfvén waves are growing in a broad turbulent spectrum with fractional harmonics, which strongly depend on the criterion. The instability is limited in the direction nearly perpendicular to the ambient magnetic field. The growth rates are very sensitive to the beam speed that perpendicular to the magnetic field, the propagational angle, and the magnetic field strength, but not sensitive to the beam speed parallel to the magnetic field. This model is used to explain the modulations with multiple timescales in the flare light curves at radio, hard X-ray and H-alpha bands.  相似文献   

10.
We present a Chandra image of the quasar, jet, and lobes of PKS 1354+195 (=4C 19.44). The radio jet is 18 arcsec long, and appears to be very straight. The length gives many independent spatial resolution elements in the Chandra image while the straightness implies that the geometrical factors are constant along the jet although their values are uncertain. We also have 4 frequency radio images with half to one arcsecond angular resolution, and use HST and Spitzer data to study the broad band spectral energy distributions. The X-ray and radio spectra are both consistent with a spectrum f ν ν −0.7 for the integrated jet. Using that spectral index, the model of inverse Compton scattering of electrons on the cosmic microwave background (IC/CMB) gives magnetic field strengths and Doppler factors that are relatively constant along the jet. Extended X-ray emission is evident in the direction of the otherwise unseen counter-jet. X-ray emission continues past the radio jet to the South, and is detected within both the southern and northern radio lobes.  相似文献   

11.
We study the relationship between the brightness (I) and magnetic field (B) distributions of sunspots using 272 samples observed at the San Fernando Observatory and the National Solar Observatory, Kitt Peak, whose characteristics varied widely. We find that the I – B relationship has a quadratic form for the spots with magnetic field less than about 2000 G. The slope of the linear part of the I – B curve varies by about a factor of three for different types of spots. In general the slope increases as the spot approaches disk center. The I – B slope does not have a clear dependency on the spot size but the lower limit appears to increase as a function of the ratio of umbra and penumbra area. The I – B slope changes as a function of age of the sunspots. We discuss various sunspot models using these results.  相似文献   

12.
The coronal magnetic field above a particular photospheric region will vanish at a certain number of points, called null points. These points can be found directly in a potential field extrapolation or their density can be estimated from the Fourier spectrum of the magnetogram. The spectral estimate, in which the extrapolated field is assumed to be random and homogeneous with Gaussian statistics, is found here to be relatively accurate for quiet Sun magnetograms from SOHO’s MDI. The majority of null points occur at low altitudes, and their distribution is dictated by high wavenumbers in the Fourier spectrum. This portion of the spectrum is affected by Poisson noise, and as many as five-sixths of null points identified from a direct extrapolation can be attributed to noise. The null distribution above 1500 km is found to depend on wavelengths that are reliably measured by MDI in either its low-resolution or high-resolution mode. After correcting the spectrum to remove white noise and compensate for the modulation transfer function we find that a potential field extrapolation contains, on average, one magnetic null point, with altitude greater than 1.5 Mm, above every 322 Mm2 patch of quiet Sun. Analysis of 562 quiet Sun magnetograms spanning the two latest solar minima shows that the null point density is relatively constant with roughly 10% day-to-day variation. At heights above 1.5 Mm, the null point density decreases approximately as the inverse cube of height. The photospheric field in the quiet Sun is well approximated as that from discrete elements with mean flux 〈|φ|〉=1.0×1019 Mx distributed randomly with density n=0.007 Mm−2.  相似文献   

13.
Relationship between Rotating Sunspots and Flares   总被引:2,自引:0,他引:2  
Active Region (AR) NOAA 10486 was a super AR in the declining phase of solar cycle 23. Dominated by the rapidly rotating positive polarity of an extensive δ sunspot, it produced several powerful flare-CMEs. We study the evolution and properties of the rotational motion of the major poles of positive polarities and estimate the accumulated helicity injected by them. We also present two homologous flares that occurred in the immediate periphery of the rotating sunspots. The main results are as follows: i) anticlockwise rotational motions are identified in the main poles of positive polarities in the AR; the fastest of them is about 220° for six days. ii) The helicity injection inferred from such rotational motion during the interval from October 25 to 30 is about − 3.0×1043 Mx2, which is comparable that calculated by the local correlation tracking (LCT) method (− 5.2×1043 Mx2) in the whole AR. It is suggested that both methods reveal the essential topological properties of the AR, even if the former includes only the major poles and the fine features of the magnetic field are neglected. iii) It is found that there is a good spatial and temporal correspondence between the onset of two homologous CME-associated flares and the rotational motion of sunspots. This suggests that the rotational motions of sunspots not only relate to the transport of magnetic energy and complexity from the low atmosphere to the corona but may also play a key role in the onset of the homologous flares. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

14.
Solar p modes are one of the dominant types of coherent signals in Doppler velocity in the solar photosphere, with periods showing a power peak at five minutes. The propagation (or leakage) of these p-mode signals into the higher solar atmosphere is one of the key drivers of oscillatory motions in the higher solar chromosphere and corona. This paper examines numerically the direct propagation of acoustic waves driven harmonically at the photosphere, into the nonmagnetic solar atmosphere. Erdélyi et al. (Astron. Astrophys. 467, 1299, 2007) investigated the acoustic response to a single point-source driver. In the follow-up work here we generalise this previous study to more structured, coherent, photospheric drivers mimicking solar global oscillations. When our atmosphere is driven with a pair of point drivers separated in space, reflection at the transition region causes cavity oscillations in the lower chromosphere, and amplification and cavity resonance of waves at the transition region generate strong surface oscillations. When driven with a widely horizontally coherent velocity signal, cavity modes are caused in the chromosphere, surface waves occur at the transition region, and fine structures are generated extending from a dynamic transition region into the lower corona, even in the absence of a magnetic field.  相似文献   

15.
We observed 4B/X17.2 flare in Hα from super-active region NOAA 10486 at ARIES, Nainital. This is one of the largest flares of current solar cycle 23, which occurred near the Sun’s center and produced extremely energetic emission almost at all wavelengths from γ-ray to radio-waves. The flare is associated with a bright/fast full-halo earth directed CME, strong type II, type III and type IV radio bursts, an intense proton event and GLE. This flare is well observed by SOHO, RHESSI and TRACE. Our Hα observations show the stretching/de-twisting and eruption of helically twisted S shaped (sigmoid) filament in the south-west direction of the active region with bright shock front followed by rapid increase in intensity and area of the gigantic flare. The flare shows almost similar evolution in Hα, EUV and UV. We measure the speed of Hα ribbon separation and the mean value is ∼ 70 km s-1. This is used together with photospheric magnetic field to infer a magnetic reconnection rate at three HXR sources at the flare maximum. In this paper, we also discuss the energetics of active region filament, flare and associated CME.  相似文献   

16.
We provide a theory of magnetic diffusion, momentum transport, and mixing in the solar tachocline by considering magnetohydrodynamics (MHD) turbulence on a β plane subject to a large scale shear (provided by the latitudinal differential rotation). In the strong magnetic field regime, we find that the turbulent viscosity and diffusivity are reduced by magnetic fields only, similarly to the two-dimensional MHD case (without Rossby waves). In the weak magnetic field regime, we find a crossover scale (LR) from a Alfvén dominated regime (on small scales) to a Rossby dominated regime (on large scales). For parameter values typical of the tachocline, LR is larger than the solar radius so that Rossby waves are unlikely to play an important role in the transport of magnetic field and angular momentum. This is mainly due to the enhancement of magnetic back-reaction by shearing which efficiently generates small scales, thus strong currents. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We develop a numerical code for simulating the magnetospheres of millisecond pulsars, which are expected to have unscreened electric potentials due to the lack of magnetic pair production. We incorporate General Relativistic (GR) expressions for the electric field and charge density and include curvature radiation (CR) due to primary electrons accelerated above the stellar surface, whereas inverse Compton scattering (ICS) of thermal X-ray photons by these electrons are neglected as a second-order effect. We apply the model to PSR J0437-4715, a prime candidate for testing the GR-Electrodynamic theory, and find that the curvature radiation spectrum cuts off at energies below 15 GeV, which are well below the threshold of the H.E.S.S. telescope, whereas Classical Electrodynamics predict a much higher cutoff near 100 GeV, which should be visible for H.E.S.S., if standard assumed Classical Electrodynamics apply. GR theory also predicts a relatively narrow pulse (2φ L ∼ 0.2 phase width) centered on the magnetic axis, which sets the beaming solid angle to ∼0.5 sr per polar cap (PC) for a magnetic inclination angle of 35 relative to the spin axis, given an observer which sweeps close to the magnetic axis. We also find that EGRET observations above 100 MeV of this pulsar constrain the polar magnetic field strength to B pc < 4× 108 G for a pulsar radius of 10 km and moment of inertia of 1045 g cm2. The field strength constraint becomes even tighter for a larger radius and moment of inertia. Furthermore, a reanalysis of the full EGRET data set of this pulsar, assuming the predicted pulse shape and position, should lead to even tighter constraints on neutron star and GR parameters, up to the point where the GR-derived potential and polar cap current may be questioned.  相似文献   

18.
In this paper a method of estimating the magnetic field strength,B, in a homogeneous microwave burst source with simplified expressions for the synchrotron radiation is presented. An approximate formula of the magnetic field is obtained using the method. Once the magnetic field is estimated the total number of energetic electrons along the line of sightN L can be estimated also. The errors ofB andN L have been given. It is found that this method is useful for semiquantitative investigations of models of radio burst sources.  相似文献   

19.
By now there is no doubt that the gamma-ray bursts (GRB) have a cosmological origin. This allows to regard GRB as the most powerful known energy sources, ε∼ 1054 erg (with a total number of gamma quanta N_γ∼ 1060). A plausible mechanism of coherent synchrotron radiation (CSR) of relativistic electrons driven by a local magnetic field is studied in this paper. We consider relativistic electrons arising in the Compton scattering of a GRB in directions close to that of the ray from the source to a ground-based observer. The synchrotron pulses from Compton electrons located at different points on the line between the GRB source and the observer arrive at the observation point simultaneously. This simultaneity ensures the coherence of the detected radiation. Both molecular clouds in the host galaxy of the GRB and our own Galaxy, as well as the Earth atmosphere are assumed to be scatterers of the GRB radiation. Signals of each scatterer reach the Earth surface, and can be detected at radio wavelengths. We estimate the characteristics of this radiation. The comparison of GRB data with the corresponding information on CSR pulses offers a way to determine some global characteristics of the medium between the Earth and the GRB source.  相似文献   

20.
Two different multiresolution analyses are used to decompose the structure of active-region magnetic flux into concentrations of different size scales. Lines separating these opposite polarity regions of flux at each size scale are found. These lines are used as a mask on a map of the magnetic field gradient to sample the local gradient between opposite polarity regions of given scale sizes. It is shown that the maximum, average, and standard deviation of the magnetic flux gradient for α,β,β γ, and β γ δ active-regions increase in the order listed, and that the order is maintained over all length scales. Since magnetic flux gradient is strongly linked to active-region activity, such as flares, this study demonstrates that, on average, the Mt. Wilson classification encodes the notion of activity over all length scales in the active-region, and not just those length scales at which the strongest flux gradients are found. Further, it is also shown that the average gradients in the field, and the average length-scale at which they occur, also increase in the same order. Finally, there are significant differences in the gradient distribution, between flaring and non-flaring active regions, which are maintained over all length scales. It is also shown that the average gradient content of active-regions that have large flares (GOES class “M” and above) is larger than that for active regions containing flares of all flare sizes; this difference is also maintained at all length scales. All of the reported results are independent of the multiresolution transform used. The implications for the Mt. Wilson classification of active-regions in relation to the multiresolution gradient content and flaring activity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号