首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1962-2011年长江流域极端气温事件分析   总被引:15,自引:1,他引:14  
根据1962-2011 年长江流域115 个气象站点的逐日最高气温、日最低气温资料,利用线性倾向估计法、主成分分析及相关分析法,并根据选取的16 个极端气温指标,分析了该地区极端气温的时间变化趋势和空间分布规律。结果表明:(1) 冷昼日数、冷夜日数、冰冻日数、霜冻日数、冷持续日数分别以-0.84、-2.78、-0.48、-3.29、-0.67 d·(10a)-1的趋势减小,而暖昼日数、暖夜日数、夏季日数、热夜日数、暖持续日数、生物生长季以2.24、2.86、2.93、1.80、0.83 、2.30 d·(10a)-1的趋势增加,日最高(低) 气温的极低值、日最高(低) 气温的极高值和极端气温日较差的倾向率分别为0.33、0.47、0.16、0.19、-0.07 ℃·(10a)-1;(2) 冷指数(冷夜日数、日最高气温的极低值、日最低气温的极低值)的变暖幅度明显大于暖指数(暖夜日数、日最高气温的极高值、日最低气温的极高值),夜指数(暖夜日数、冷夜日数) 的变暖幅度明显大于昼指数(暖昼日数、冷昼日数);(3) 空间分布上,长江上游区域冷指数的平均值大于其中下游区域,而暖指数和生物生长季则是中下游多年平均值大于上游区域(暖持续日数除外);(4) 因子分析的结果表明,除了极端气温日较差之外,各极端气温指数之间均呈现很好的相关性。  相似文献   

2.
1960~2014年河南极端气温事件时空演变分析   总被引:2,自引:0,他引:2  
高文华  李开封  崔豫 《地理科学》2017,37(8):1259-1269
基于河南1960~2014年18个气象台站逐日最高温、最低温、平均气温实测数据,采用线性趋势、相关分析等方法,根据选取的16个极端气温指数,分析了河南省极端气温变化趋势和空间差异,探讨了极端气温指数的影响因素以及与该区气候变化的关系。结果表明: 河南近55 a来日最高气温的极小值、最低气温的极大/小值、暖昼/夜日数、夏季日数、热夜日数、暖持续日数、生物生长季呈现增大/加趋势;日最高气温的极大值、冷昼/夜日数、冰/霜冻日数、冷持续日数和气温日较差呈现减小/少趋势。 极端最低气温的变暖主要发生在黄淮海平原区、豫西南南阳盆地以及豫南桐柏山-大别山山地丘陵区;而极端最高气温的变暖则主要发生在豫西山地丘陵区。与中国其他地区相比,河南极端气温近55 a的变化速率较慢,低温出现的日数显著减少;但近20 a来大部分极端气温指数的变化速率均提高了2倍多,表明该区极端气温进入了加速变化阶段。 相关分析表明河南极端气温指数变化可以指示该区气候变化,且地形条件是该区极端气温空间变化的控制因素。  相似文献   

3.
1961-2010 年西藏极端气温事件的时空变化   总被引:10,自引:1,他引:9  
杜军  路红亚  建军 《地理学报》2013,68(9):1269-1280
利用18 个气象站点1961-2010 年逐日最高、最低气温和平均气温资料,分析了西藏极端气温事件的变化规律。结果表明:近50a 西藏霜冻日数和结冰日数明显减少,结冰日数减少显著的区域集中在藏北,霜冻日数则在整个区域都显著减少;生长季长度以4.71 d/10a 的速度明显延长,以拉萨、泽当最显著。极端最低气温在全区范围均呈显著升高,尤其是近30a 升幅更大,达1.06 oC/10a;最高气温的极大值在沿雅鲁藏布江一线东段和那曲地区上升较明显,而在南部边缘地区有下降的趋势。冷夜(昼) 日数普遍明显减少,减幅为9.38 d/10a (4.96 d/10a);暖夜(昼) 日数显著增加,增幅为10.99 d/10a (6.72 d/10a)。大部分极端气温指数的变化趋势与海拔高度有较高的相关性,其中极端最低气温与海拔高度呈正相关,极端最高气温、结冰日数、暖昼(夜) 日数和生长季长度呈负相关。极端最高、最低气温和气温暖指数呈逐年代增加趋势,极端气温冷指数和生长季长度表现为下降的年代际变化特征。在时间转折上,极端最低气温、冷(暖) 夜指数和生长季长度的突变点发生在20 世纪90 年代中期前,霜冻、结冰日数和冷(暖) 昼指数的突变点则推迟到21 世纪初期。多数情况下,西藏极端气温指数的变幅比全国、青藏高原及其周边地区偏大,说明西藏极端气温变化对区域增温的响应更为敏感。  相似文献   

4.
利用ERA-Interim再分析资料,分析了1979-2014年中国极端通用热气候指数(Universal Thermal Climate Index,UTCI)时空变化特征。结果表明:(1)从全国平均看,暖指数均显著上升,且暖夜日数升幅(1.50 d/10a)大于暖昼日数(1.32 d/10a),夏季最低UTCI升幅(0.63°C/10a)大于夏季最高UTCI(0.24°C/10a)。暖昼、暖夜日数自90年代初后迅速增多。冷指数中,冬季最高UTCI显著上升(0.42°C/10a),其他指数无显著趋势。冷昼、冷夜日数阶段性特征明显,20世纪80年代和2000年代中期之后均值、波动幅度均较大,其间均值、波动幅度均较小。最近10年,中国夏季极端热应力和冬季极端冷应力均较为显著。(2)从空间分布上看,暖指数在中国绝大多数区域上升。暖昼、暖夜日数的上升中心均位于新疆东部和内蒙古中部地区,升幅分别为3 d/10a~4.80 d/10a、4 d/10a~5.94 d/10a。冷指数中,冬季最高UTCI在82.04%的区域上升,内蒙古中部和西部及陕西北部地区升幅最大,达1.20°C/10a~2.18°C/10a;其他指数的变化趋势在绝大多数区域不显著,且变化幅度较小。(3)极端UTCI指数和极端气温指数均表明,中国多数地区夏季暖昼、暖夜日数上升,冬季冷昼、冷夜日数下降。但极端气温指数揭示的暖昼、暖夜日数升幅更大,且暖夜日数升幅大于暖昼日数的现象更显著,冷昼、冷夜日数下降趋势的范围和降幅也更大。  相似文献   

5.
1960~2014年北京极端气温事件变化特征   总被引:3,自引:1,他引:2  
基于北京1960~2014年逐日最高温、最低温、平均气温实测数据,采取RHtest方法对气温序列进行均一性检验和修订。在此基础上选取16个极端气温指标,分析了北京市极端气温变化趋势和突变特征,探讨了冷暖极端气温指数对北京气候暖化的贡献。结果表明:1 1960~2014年北京气温暖化趋势明显,最低温增温速率远快于最高温,修订后增长速率为:最高温(0.17℃/10a)平均温(0.30℃/10a)最低温(0.51℃/10a);2冷昼日数、冷夜日数、霜冻日数、冰冻日数、冷持续日数分别以-1.43 d/10a、-6.56 d/10a、-3.95 d/10a、-1.18 d/10a、-4.83 d/10a的趋势减小;3暖昼日数、暖夜日数、夏季日数、热夜日数、暖持续日数、生物生长季以2.12 d/10a、5.27 d/10a、1.22 d/10a、5.43 d/10a、0.84 d/10a、1.96 d/10a的趋势增加;4日最高(低)气温极高值、日最高(低)气温极低值和气温日较差的倾向率分别为0.21℃/10a、0.34℃/10a、0.31℃/10a、0.73℃/10a、-0.33℃/10a;5极端最低气温的变暖幅度大于极端最高气温,夜指数的变暖幅度大于昼指数,冷指数的变幅大于暖指数。极端气温冷指数、夜指数、低温指数的快速变化是近年来北京市气候暖化的最直接体现。  相似文献   

6.
基于黄土高原地区52个气象站点逐日平均气温、最高和最低气温数据,采用一元线性趋势分析、相关分析等方法,分析该地区极端气温趋势变化及空间差异。结果表明:① 日最高(低)气温极低值、日最高(低)气温极高值、热夜日数、暖昼(夜)日数、热持续日数、夏季日数和生物生长季日数呈增加的趋势,其余极端气温指数呈减小的趋势。② 空间分布上,表征低温事件的冰冻日数、霜冻日数、冷昼(夜)日数和冷持续日数下降最显著的区域位于黄土高原北部;表征高温事件的热夜日数、夏季日数、暖昼(夜)日数和热持续日数上升最显著的区域主要位于黄土高原西北部;生物生长季日数上升最显著的区域主要位于黄土高原中部地区。③ 相关分析表明除了极值指数和气温日较差与其余极端气温指数相关性较差外,其余各极端气温指数之间均具有较好的相关性。④ 多数极端气温指数的变化趋势与平均气温关系密切,平均气温突变前后极端气温指数存在明显差异。⑤ Hurst指数结果表明黄土高原地区极端气温变化均呈同向变化特征。  相似文献   

7.
丁之勇  董义阳  鲁瑞洁 《地理科学》2018,38(8):1379-1390
基于中国天山地区35个气象站点1960~2015年逐日最高、最低气温实测资料,应用Mann-Kendall趋势检验分析法, 空间分析法等研究了极端气温的时空变化特征,并探讨了气温指数的环流背景因素。结果表明:近56 a来,年平均最高、最低气温均呈上升趋势,而日较差呈下降趋势; 暖指数和日最低()气温极小值均呈上升趋势,而其他冷指数呈减小趋势;从季节变化看,除暖昼、暖夜之外,大部分气温指数的冬季变暖幅度均明显高于夏季。空间分布上,天山山区年平均最低气温和日较差以及大部分冷指数的变暖幅度大于南北坡,而暖指数则表现为南坡大于北坡和山区。高温和低温指数变化幅度表现出明显不对称性变化,年平均最低温的变暖幅度明显大于年平均最高温,冷指数变暖幅度大于暖指数,夜指数变暖幅度显著大于昼指数。天山地区年平均最高(低)气温和极端气温冷指数受环流指数北极涛动(AO)、北大西洋涛动(NAO)和厄尔尼诺-南方涛动(ENSO)的影响较大,而北太平洋涛动(NPO)、东亚夏季风(EASMI)、南亚夏季风(SASMI)和南海夏季风(SCSMI)是暖指数变化的重要因素。  相似文献   

8.
基于山西省境内70个气象站点的逐日最高气温、最低气温和平均气温资料,使用8个不同的极端气温指数分析其1960—2019年近60 a极端气温事件的变化特征,并分析其对气候变暖的响应。结果表明:(1)夏季日数、热夜日数、日最低气温极大值、日最低气温极小值均呈显著增加趋势,冰冻日数、霜冻日数呈显著减少趋势。(2)极端最高(低)气温的极大、极小值均上升,并且大部分地区极端气温的极小值增温幅度更大。(3)山西省平均气温呈显著变暖趋势,平均每10 a增加0.26℃,空间上气温增幅呈从东南向西北逐渐增大的趋势。各极端气温指数对气候变暖具有较好的响应,其中霜冻日数对于山西省区域增暖的响应最显著,其次为日最低气温极大值。(4)山西省半干旱区的日最低气温极小、极大值增温更快,冰冻日数减少速度快;半湿润区的热夜日数增加速度快,霜冻日数减少速度快。  相似文献   

9.
1960-2017年渭河流域极端气温变化及其对区域增暖的响应   总被引:2,自引:1,他引:1  
姬霖  段克勤 《地理科学》2020,40(3):466-477
基于逐日最高和最低气温,计算1960-2017年渭河流域16项极端气温指数,发现近58 a 渭河流域极端冷指数(冰冻日数、霜冻日数、冷夜日数、冷昼日数和冷持续指数)呈下降趋势,极端暖指数(夏日日数、热夜日数、暖昼日数、暖夜日数、作物生长期和热持续指数)呈上升趋势,特别是20世纪80年代后上升速率明显加快。流域半干旱区对气候变暖的响应更敏感,主要体现在白天温度增高以及冰冻和霜冻日数减少,而半湿润区主要为夜间增暖。相比1960-2003年,2004-2017年流域平均温度升高1.75℃,暖夜/暖昼日数增加10.99/6.79 d,而霜冻/冷夜日数减少8.71/2.35 d。分析发现地形条件是影响流域极端气温空间差异的重要因素。在流域半干旱区,冷夜和冷昼日数的快速减少,有利于农作物的生长。而在相对湿度较大的半湿润区,随着夏季连续高温天气增多,高温热浪事件的危害更大。  相似文献   

10.
1960~2013年中国沿海极端气温事件变化特征   总被引:7,自引:2,他引:5  
基于1960~2013年中国沿海110个地面气象站资料,分析了中国沿海极端气温事件的变化特征。结果表明:中国近54 a来月最高气温极小值(TXn)、极端最高温(TXx)、极端最低温(TNn)和月最低气温极大值(TNx)都呈上升趋势,其中极端最低气温上升幅度最大,升幅为0.40 ℃/10a。日较差(DTR)、冷昼日数(TX10p)和冷夜日数(TN10p)呈下降趋势,降幅分别为-0.12℃/10a、-0.7 d/10a和-2.19 d/10a,暖昼日数(TX90p)和暖夜日数(TN90p)呈显著上升趋势,升幅分别为1.31 d/10a和2.24 d/10a。SU25和TR20近30 a上升幅度分别为6.35 d/10a和5.28 d/10a。从空间变化来看TXn、TXx、TNn和TNx分别有97%、71%、97%和97%气象站呈上升趋势,大部分都通过了0.01水平的显著性检验。TX10p、TN10p和DTR分别有90%、99%和81%的气象站呈下降趋势。大部分极端气温指数变化趋势与纬度、经度和海拔有显著的相关性。极端气温指数在气候变暖突变前后也存在明显差异,TX10p、TN10p和DTR在气候变暖后明显减少,而其他指数则明显上升。  相似文献   

11.
李如意  赵景波 《中国沙漠》2016,36(2):483-490
毛乌素沙地处于多层次生态地理景观过渡带,拥有丰富的自然及人文资源.研究该生态脆弱区极端气温变化,有利于揭示全球气温变化与局地气温响应之间的复杂关系,为当地的可持续发展和气象灾害预防提供参考。通过线性趋势分析、累计距平、Mann-Kendall法、因子分析、R/S分析等方法,分析了该地极端气温指数的变化特征\,突变特点、相互关系,探讨了该地区气温变化的空间差异和极端气温未来的变化趋势。结果表明:(1)极端最低气温、极端最高气温、夏日日数、热夜日数、暖夜日数、暖日日数分别以不同的速率上升;冰日日数、霜冻日数、冷夜日数、冷日日数分别以不同的速率下降。(2)除极端最高气温、极端最低气温外,其余8项极端气温指数均发生突变,突变年份集中在20世纪90年代。(3)冷指数大幅下降是毛乌素沙地极端气温变化的主要特点,并且各冷指数间、各暖指数间相关关系显著。(4)毛乌素沙地极端气温在空间上表现出不同的变化特点,东北方向(榆林及鄂托克旗)冷指数呈现大幅减少,西南方向(横山及盐池)暖指数呈现大幅增加。(5)ENSO事件具有使毛乌素沙地极端最高气温降低的作用以及使极端最低气温升高的作用。(6)10项极端气温指数的Hurst指数均大于0.5,表明未来毛乌素沙地极端气温仍将呈现冷指数下降、暖指数上升的变化趋势。  相似文献   

12.
王钰  冯起 《中国沙漠》2016,36(4):1097-1105
以陕北地区1960-2013年的逐日气温数据为基础,运用Mann-Kendall非参数检验法,分析了该区极端气温指数及其变化趋势。结果表明:(1)陕北地区年平均气温、最高和最低气温分别以0.27、0.24、0.28℃/10a的速率显著增加(P<0.05),各站点气温指标均上升,且冬季变暖幅度最大,春季次之。(2)最低气温极高值、暖夜、暖日分别以0.054℃/10a、1.83d/10a、1.4d/10a显著增大;年日最高气温极高值与生长日长度增幅分别为0.092℃/10a、2.4d/10a;暖日、暖夜各季节亦显著上升;气温日较差以-0.036℃/10a的速率减小。除气温日较差外,其余指数均有50%以上的站点呈上升趋势。(3)最高气温极低值增幅为0.217℃/10a;最低气温极低值、冷日减幅分别为-0.015℃/10a、-0.48d/10a;冷夜以-0.98d/10a的速率显著减小;霜日及冰日分别以2.2/10a、2.4d/10a的速率显著减小。除最低气温极低值及最高气温极低值外,其余指数均有100%的站点呈下降趋势。4)暖指数的增大幅度大于冷指数的减小幅度,夜指数的减小幅度大于昼指数增大幅度。极端气温的两极化分布趋势导致研究区域高温、旱灾及冰冻等灾害的频发。  相似文献   

13.
高雁鹏  陈文俊 《地理科学》2021,41(11):2052-2062
通过选取极端气温指数对1984—2020年辽宁省极端气温时空变化进行分析,结果表明:① 近37 a极端气温指数的时间变化具有一致性,表现为暖指数(年极端高温、暖昼日数、暖夜日数)上升和冷指数(年极端低温、冷昼日数、冷夜日数)下降。受城市化进程影响,突变主要集中在1995—2005年。② 极端气温指数具有空间差异性,具体表现在城镇化水平高的城市极端气温差值变化较小,沿海地区相对指数变化幅度相对较小。③ 结合辽宁省粮食与气象灾害数据,得出1984—2020年粮食实际产量与趋势产量呈波动上升变化。相对产量与气象产量波动趋势一致,近37 a气候丰年10个、气候歉年7个,其他为正常年份。气象产量受极端高温、极端低温的影响较大,风雹、冷冻成为影响粮食产量的关键气象灾害。  相似文献   

14.
基于北方地区 404 个气象站 1960—2017 年逐日最高气温、最低气温资料,应用线性倾向估 计法、Mann-Kendall 法、滑动 t 检验法、累积距平法和相关分析法,分析了极端气温的时空变化特 征,并探讨了气温指数的影响因素。研究表明:极端气温暖指数和极值指数呈上升趋势,冷指数和 气温日较差呈下降趋势;变化幅度中冷指数大于暖指数,夜指数大于昼指数,西北地区极端气温指 数变化幅度最大,东北地区最小。突变时间上,极端气温指数突变主要发生在 20 世纪 80 年代和 90 年代,暖指数和极高值指数晚于冷指数和极低值指数,东北地区极端气温指数突变时间最早,西北 地区最晚,突变后极端暖事件和气温极值事件进入多发阶段,极端冷事件进入少发阶段。1988— 2012 年极端气温指数的变化响应了全球变暖停滞现象。多数极端气温指数与经纬度、海拔高度显 著相关。北极涛动(AO)指数对极端气温的影响最强,对冷指数影响最明显。气溶胶光学厚度与多 数冷指数呈负相关,而与多数暖指数呈正相关。  相似文献   

15.
黄土高原生态环境脆弱,极端气候频发,越来越多的影响到人类的生产生活。通过基于 138 个气象站点观测资料,利用一元线性方程和 Mann-Kendall 法分析了黄土高原地区 27 个极端气 候指数的时空变化,得到以下主要结论:(1)极端气温指数中霜冻日数、冰冻日数、日最低气温的极 高值和冷持续日数在逐渐减少,生长季长度、夏季日数,热夜日数、日最高气温的极高值、暖持续日 数在逐渐增加。(2)极端气温指数中冷昼日数、冷夜日数、日最低气温极低值、日最高气温极高值、 气温日较差在子区域与全区变化趋势存在不同,主要表现在黄土塬区、黄土峁状丘陵区和石质山 地区。(3)极端降水指数变化趋势平缓,与多年均值接近。在空间分布上,除极强降水量、强降水量 和年均雨日降水强度在各子区域上与全区变化趋势一致外,其余指数在各子区域上与全区变化趋 势存在不同,主要表现在黄土塬和黄土梁状丘陵区。(4)多数极端气温指数的突变主要发生在 1980—1985 年和 2010—2015 年;多数极端降水指数的突变主要发生在 1985—1990 年和 2010— 2015 年。  相似文献   

16.
王晓利  侯西勇 《地理研究》2019,38(4):807-821
基于1982—2014年GIMMS NDVI3g数据集,分析中国沿海地区生长季归一化植被指数(NDVI)的时空变化特征,探讨NDVI对极端气温和极端降水年尺度和月尺度的响应特征。结果表明:中国沿海地区及其子区域NDVI均呈上升趋势,且该趋势具有一定持续性;江南及其以南各子区域的NDVI高于江南以北,但长江三角洲、珠江三角洲等地区NDVI下降较明显,而江南以北沿海地区NDVI多呈上升趋势。NDVI在东北沿海西部、华北和黄淮沿海各子区域与极端气温暖指数(暖昼日数和日最高气温的极高值)多呈负相关,在其他沿海地区多呈正相关。NDVI与极端气温冷指数(冷昼日数和日最低气温的极低值)在整个沿海地区基本呈负相关,且对冷指数的响应具有一定滞后性;江淮(含)以南各子区域的NDVI与气温日较差多呈正相关,以北基本呈负相关。NDVI在黄淮以北与极端降水之间一般呈正相关,在黄淮(含)以南和东北沿海中东部地区多呈负相关,黄淮(含)以北各子区域的NDVI对极端降水的滞后效应较明显。  相似文献   

17.
本文利用1961—2010年北疆地区20个气象台站的逐日降水量、最高气温、最低气温及平均气温资料,采用国际气候诊断与指数小组(ETCDDMI)所提供极端降水和气温事件的各种指标,对极端气候事件时空变化规律进行分析。结果表明:近50年,北疆地区极端降水和气温事件有显著的增加趋势;在北疆不同气候区极端降水指标变化趋势表现不同,其中准噶尔盆地地区增长趋势最慢;冷夜(日) 指数呈现下降趋势,为-4.05 d/10a(-1.51 d/10a),暖夜(日)指数呈现增加趋势,为4.36 d/10a (1.64 d/10a)。线性趋势分析发现,在20世纪80年代后极端降水事件有明显的增加趋势;应用M-K检测年最高气温和年最低气温,发现大多数站点在20世纪80年代后年最高气温和年最低气温也呈现显著增加。这表明在20世纪80年代后,北疆地区的极端气候事件增加趋势更加显著。  相似文献   

18.
利用塔城地区7个国家气象观测站1961—2018年逐日气温资料,选用国际通用的10个极端气温指数,分析塔城地区极端气温的时空变化特征及其影响因子.结果表明:(1)塔城地区极端气温指数暖化趋势明显,最低气温极低值以0.97℃·(10a)-1的倾向率显著升高,最高气温极高值以0.09℃·(10a)-1的倾向率不显著升高;冷...  相似文献   

19.
杨阳  赵娜  岳天祥 《地理科学》2022,42(3):536-547
基于全国2 419个气象站1980—2018年逐日气象观测资料,利用Mann-Kendall突变检验、滑动t检验、空间自相关及标准差椭圆等方法,选取4个典型的极端高温指数,分析了中国极端高温事件时空格局演变特征。结果表明:① 中国近40 a来夏天日数、热夜日数、暖夜日数和暖昼日数均呈显著的上升趋势,4个指数均在20世纪80、90年代偏少,2000年以后逐渐增加,4个极端高温指数均在2000年左右发生显著变化。② 4种极端高温指数的空间自相关主要是以高?高和低?低2种空间聚集形态为主,夏天日数和热夜日数的聚集性较强,近40 a来暖夜日数和暖昼日数的空间聚集性先增强后减弱,且空间聚集性分布格局由高?高包围低?低转变为低?低包围高?高。③ 4个指数变化率最大的站点均位于南方地区,其中夏天日数变化率最大的站点呈东西向分布格局,其余3个指数变化率最大的站点呈南北向分布格局,西南、西北地区交界地带夏天日数和暖昼日数在近40 a来变化率均显著高于全国其他地区,华东沿海地区暖夜日数的变化趋势方向性分布最明显,且变化趋势高于全国其他地区。  相似文献   

20.
基于青藏高原地区98个气象观测站点53年(1960-2012)的气温实测记录,计算了年度昼夜极端温度指数、温度极值和日均温差,并利用趋势分析、变化点检测与分段拟合方法分析了各指数反映的年际变化趋势及空间差异特征。结果表明:青藏高原整体区域各极端温度指数均表现出上升特征,昼夜升温和冷暖升温的不对称性特点显著,夜间冷、暖指数变化速率均快于白天;而在同等昼夜条件下,冷指数下降速率则高于暖指数上升速率,日均温差以-0.18℃/10a的速率小幅降低,温度极值普遍表现为升温现象,近53年来最低气温的极小值上升幅度为4℃左右,明显高于其他极值指数的上升速率,其中最高温度的极大值上升速率最慢,也证实了青藏高原地区温度上升的冷暖不对称性。空间分布上,青藏高原各气温极端指数年际变化速率存在区域差异性,其中西藏的南部及青海的西北部冷昼指数、冷夜指数和暖夜指数变化最为显著;青海、四川及西藏东北部的暖昼指数增长速率稳定。日均温差的变化点大多发生在20世纪80年代初期,多数站点的冷昼指数在90年代中后期发生变化,其余温度指数的变化点集中于90年代初期及中期,时间变化点分布表明研究期间青藏高原温度突变主要集中在20世纪后期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号