首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 343 毫秒
1.
The Archean Murchison greenstone belt, Limpopo Province, South Africa, represents a rifted epicontinental arc sequence containing the largest volcanic-hosted massive sulfide (VMS) district in Southern Africa. The so-called Cu–Zn line is host to 12 deposits of massive sulfide mineralization including: Maranda J, LCZ, Romotshidi, Mon Desir, Solomons, and Mashawa with a total tonnage of three million metric tons of very high grade Zn, subordinate Cu, and variable Pb and Au ore. The deposits developed during initial phases of highly evolved felsic volcanism between 2,974.8 ± 3.6 and 2,963.2 ± 6.4 Ma and are closely associated with quartz porphyritic rhyolite domes. Elevated heat supply ensured regional hydrothermal convection along the entire rift. Recurrent volcanism resulted in frequent disruption of hydrothermal discharge and relative short-lived episodes of hydrothermal activity, probably responsible for the small size of the deposits. Stable thermal conditions led to the development of mature hydrothermal vent fields from focused fluid discharge and sulfide precipitation within thin layers of felsic volcaniclastic rocks. Two main ore suites occur in the massive sulfide deposits of the “Cu–Zn line”: (1) a low-temperature venting, polymetallic assemblage of Zn, Pb, Sb, As, Cd, Te, Bi, Sn, ±In, ±Au, ±Mo occurring in the pyrite- and sphalerite-dominated ore types and (2) a higher temperature suite of Cu, Ag, Au, Se, In, Co, Ni is associated with chalcopyrite-bearing ores. Sphalerite ore, mineralogy, and geochemical composition attest to hydrothermal activity at relatively low temperatures of ≤250 °C for the entire rift, with short-lived pulses of higher temperature upflow, reflected by proportions of Zn-rich versus Cu-rich deposits. Major- and trace-metal composition of the deposits and Pb isotope signatures reflect the highly evolved felsic source rock composition. Geological setting, host rock composition, and metallogenesis share many similarities not only with Archean VMS districts in Canada and Australia but also with recent arc–back-arc systems on the modern seafloor where fragments of continental crust and areas of elevated heat flow are involved in petrogenetic and associated metallogenic processes.  相似文献   

2.
Volcanic‐hosted massive sulfide (VHMS) deposits of the eastern Lachlan Fold Belt of New South Wales represent a VHMS district of major importance. Despite the metallogenic importance of this terrane, few data have been published for sulfur isotope distribution in the deposits, with the exception of previously published studies on Captains Flat and Woodlawn (Captains Flat‐Goulburn Trough) and Sunny Corner (Hill End Trough). Here is presented 105 new sulfur isotope analyses and collation of a further 92 analyses from unpublished sources on an additional 12 of the VHMS systems in the Hill End Trough. Measured δ34S values range from ‐7.4% to 38.3%, mainly for massive and stockwork mineralisation. Sulfur isotope signatures for polymetallic sulfide mineralisation from the Lewis Ponds, Mt Bulga, Belara and Accost deposits (group 1) are all very similar and vary from ‐1.7% to 5.9%. Ore‐forming fluids for these deposits were likely to have been reducing, with sulfur derived largely from a magmatic source, either as a direct magmatic contribution accompanying felsic volcanism or indirectly through dissolution and recycling of rock sulfide in host volcanic sequences. Sulfur isotope signatures for sulfide mineralisation from the Calula, Commonwealth, Cordillera and Kempfield deposits, Peelwood mine and Sunny Corner (group 2) are similar and have average δ34S values ranging from 5.4% to 8.1%. These deposits appear to have formed from ore fluids that were more oxidising than group 1 deposits, representing a mixed contribution of sulfur derived from partial reduction of seawater sulfate, in addition to sulfur from other sources. The δ34S values for massive sulfides from the John Fardy deposit are the highest in the present study and have a range of 11.9–14.5%, suggesting a greater component of sulfur of seawater origin compared to other VHMS deposits in the Hill End Trough. For barite the sulfur isotope composition for samples from the Commonwealth, Stringers and Kempfield deposits ranges from 12.6% to 38.3%. More than 75% of barite samples have a sulfur isotope composition between 23.4 and 30.6%, close to the previously published estimates of the composition of seawater sulfate during Late Silurian to earliest Devonian times, providing supporting evidence that these deposits formed concurrently with the Late Silurian volcanic event. Sulfur isotope distribution appears to be independent of the host rock unit, although there appears to be a relation linking the sulfur isotope composition of different deposits to defined centres of felsic volcanism. The Mt Bulga, Lewis Ponds and Accost systems are close to coherent felsic volcanic rocks and/or intrusions and have sulfur isotope signatures with a stronger magmatic affinity than group 2 deposits. By contrast, group 2 deposits (including John Fardy) are characterised by 34S‐enrichment and a lesser magmatic signature, are generally confined to clastic units and reworked volcanogenic sediments with lesser coherent volcanics in the local stratigraphy, and are interpreted to have formed distal from the magmatic source. An exception is the Belara deposit, which is hosted by reworked felsic volcanic rocks and has a more pronounced magmatic sulfur isotope signature.  相似文献   

3.
红透山式块状硫化物铜锌矿床地球化学特征及找矿意义   总被引:2,自引:0,他引:2  
产于辽宁省清原地区太古宙花岗-绿岩地体中的红透山式块状硫化物铜锌矿床,具有独特的地球化学特征。以往应用微量元素、稀土元素、同位素、岩石化学等地球化学特征,在原岩恢复、时空演化、矿床成因等基础地质研究中发挥了重要作用。通过该类矿床地层(矿体)中微量元素、卤族元素、汞元素、硫同位素及容矿岩石的岩石化学等地球化学特征的研究,提出了其对清原地区寻找红透山式块状硫化物铜锌矿床的地质找矿意义。  相似文献   

4.
甘肃厂坝铅锌矿床喷气沉积成因研究   总被引:9,自引:2,他引:9  
厂坝铅锌矿床矿体为层状,具有韵律性沉积层序,矿体内发育喷气沉积岩,并且在矿体下盘发育特征的网脉状矿化蚀变带,在矿体外围有富阳起石蚀变岩。这些地质特征充分说明矿床由喷气沉积作用形成。矿床的微量元素,稀土元素及硫,碳-氧和铅等稳定同位素特征表明矿床的硫和碳来源于古海水,成矿金属来源于矿体下伏地层柱。  相似文献   

5.
《International Geology Review》2012,54(11):1409-1428
ABSTRACT

The Mauranipur and Babina greenstone belts of the Bundelkhand Craton are formed of the Central Bundelkhand greenstone complex (CBGC). This complex represents tectonic collage which has not been previously studied in depth. The purpose of this study is to contribute to the understanding of the main features of the Archaean crustal evolution of the Bundelkhand Craton. The CBGC consists of two assemblages: (1) the early assemblage, which is composed of basic-ultramafic, rhyolitic–dacitic, and banded iron formation units, and (2) the late assemblage, which is a felsic volcanic unit. The units and assemblages are tectonically unified with epidote–quartz–plagioclase metasomatic rocks formed locally in these tectonic zones.

The early assemblage of the Mauranipur greenstone belt is estimated at 2810 ± 13 Ma, from the U–Pb dating (SHRIMP, zircon) of the felsic volcanics. Also, there are inherited 3242 ± 65 Ma zircons in this rock. It is deduced that this assemblage is related to early felsic subduction volcanism during the Mesoarchaean that occurred in the Bundelkhand Craton.

Zircons extracted from metasomatic rocks in the early assemblage’s high-Mg basalts show a concordant age of 2687 ± 11 Ma. This age is interpreted as a time of metamorphism that occurred simultaneously with an early accretion stage in the evolution of the Mauranipur greenstone belt.

The felsic volcanism, appearing as subvolcanic bodies in the late assemblage of the Mauranipur greenstone belt, is estimated to be 2557 ± 33 Ma from the U–Pb dating (SHRIMP, zircon) of the felsic volcanic rocks. This rock also contains inherited 2864 ± 46 Ma zircons. The late assemblage of the Mauranipur greenstone belt corresponds with a geodynamic setting of active subduction along the continental margin during Neoarchaean.

The late assemblage Neoarchaean felsic volcanic rocks from the Mauranipur and Babina greenstone belts are comparable in age and geochemical characteristics. The Neoarchaean rocks are more enriched in Sr and Ba and are more depleted in Cr and Ni than the Mesoarchaean felsic volcanic rocks of the early assemblage.

Through isotopic dating and the geochemical analysis of the volcanic and metasomatic rocks of the CBGC, this study has revealed two subduction–accretion events, the Meso–Neoarchaean (2.81–2.7 Ga) and Neoarchaean (2.56–2.53 Ga), during the crustal evolution of the Bundelkhand Craton (Indian Shield).  相似文献   

6.
滇西大平掌铜多金属矿床火山喷流沉积原因   总被引:6,自引:0,他引:6  
大平掌矿床由上部层状块状硫化物矿体和下部细脉浸染状矿体组成,双层结构清楚。块状矿体中发育典型的草莓状和鲕状硫化物。成矿地质背景和矿石中的金属元素及REE配分形式、S同位素组成、流体包裹体特征等均与黑矿型矿床及现代海底热液活动区硫化物矿床相似。矿床典型的火山喷流沉积成因。  相似文献   

7.
四川西部呷村银多金属矿床稀土地球化学研究   总被引:3,自引:0,他引:3  
呷村矿床是我国典型的含金富银多金属海相火山岩型块状硫化物矿床。通过对该矿床岩石及矿石的稀土地球化学研究,结合硫铅同位素的工作,提出成矿热液为高温酸性、富C1溶液,其稀土特征为富轻稀土,具明显正铕异常。在蚀变过程中,流体/岩石比值相对较主,稀土元素在成矿流体-围岩间具有明显的带进或带出。正铕异常产生最可能的来源是该区深部火山岩富含长石,热水溶液与火山岩发生水岩反应使长石释放出铕,使热水溶液具正Eu异常,这方面也反映该矿床成矿物质与深部火山岩有密切关系。弱负铈异常是成矿流体继承海水Ce亏损的结果。层状矿石中Eu异常变化较大,且其中LREE的含量变化大于HREE。主要原因可能是矿石中矿物组成和形成条件的变化。呷村矿床的成矿模式可以认为是火山喷发过程中产生了岩浆热液,并带出了硫和金属元素,并在海底附近快速沉淀形成。成矿后为正常深海沉积岩覆盖。  相似文献   

8.
We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb–Cu–Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.  相似文献   

9.
对大厂锡矿床容矿岩石稀土元素地球化学研究表明,本矿区主要容矿岩石——硅质岩、富长石岩及电气石岩稀土元素总量低,具弱的Ce亏损,明显的Eu负异常。这些特点与某些 有代表性矿床中的热液喷气沉积岩一条带状燧石岩及电气石岩十分相似,证明了它们属于喷气沉积成因。相反,与主要容矿岩石互成条带的部分绢云母岩,含绢云母的长石岩等则稀土总量高,轻重稀土分馏明显,与北美页岩相似,具有陆源沉积或混合成因的特征。运用聚类分析的方法,这些岩石的微量元素地球化学分类与上述结果完全一致,为其成因进一步提供了佐证。  相似文献   

10.
The sequence of orebody formation at the Talgan massive sulfide deposit; morphology of sulfide orebodies; mineralogy, texture, and structure of ore; chemical composition of minerals; and fluid inclusions and relationships between stable isotopes (S, C, O) in sulfides from ores and carbonate rocks are discussed. The deposit is localized in the Uzel’ga ore field of the northern Magnitogorsk Megazone. The sulfide ore is hosted in the upper felsic sequence of the Middle Devonian Karamalytash Formation, composed of basalt, basaltic andesite, and rhyodacite. Orebodies are irregular lenses lying conformably with host rocks. Pyrite, chalcopyrite, sphalerite, and fahlore are the major ore minerals; galena, bornite, and hematite are of subordinate abundance. Sulfide mineralization bears attributes of deposition under subseafloor conditions. The carbonate and rhyolite interlayers at the roofs of orebodies and the supraore limestone sequence served as screens. Zoning typical of massive sulfide deposits was not established. The study of fluid inclusions has shown that the temperature of the hydrothermal solution varied from 375 to 110°C. δ34S‰ ranges from ?2.4 to +3.2‰ in pyrite, from ?1.2 to +2.8‰ in chalcopyrite, and from ?3.5 to +3.0‰ in sphalerite (CDT). These parameters correspond to an isotopic composition of magmatic sulfur without a notable percentage of sulfate sulfur. δ13C and δ18O of carbonates vary from ?18.1 to +5.9‰ (PDB) and from +13.7 to +27.8‰ (SMOW), respectively. The carbon and oxygen isotopic compositions of carbonates from ores and host rocks markedly deviate from the field of marine carbonates; a deep source of carbon is suggested. The results obtained show that the main mass of polysulfide ore at the Talgan deposit was formed beneath the floor of a paleoocean. The ore-forming system was short-lived and its functioning did not give rise to the formation of zonal orebodies. Magmatic fluid played the leading role in mineral formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号