首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary In adjusting measured values in sets A(r*), v(r*) and f(r*) by means of a power function in the form of P=Kr* a region of discontinuity of the approximating curves was found at the distance r*11.5 m kg –1/3. It is assumed that this discontinuity was caused by the varying character of the source of seismic waves. For scaled distances r*>11.5 m kg –1/3 the explosion was considered to be a spherical source from the point of view of the charge geometry and of the distance of the pick-up from the centre of the charge, whereas if r*<11.5 m kg –1/3 the explosion in the borehole had the character of a cylindrical source. The difference of the two types of sources was reflected in the exponent with both the functions A(r*) and v(r*), so that for r*>11.5 m kg –1/3 –4.0 and–2.4, and for r*<11.5 m kg –1/3 –2.5 and–1.5. For the same intervals of scaled distance in the set f(r*)1.4 and1.2.  相似文献   

2.
Summary A system of 8 seismically active fracture zones was delineated on the basis of the distribution of earthquake foci in the continental lithosphere of Ecuador. The position and width of the outcrop, thickness, dip and maximum depth of the individual fracture zones were estimated and correlated with surface geological and tectonic phenomena, volcanism and hydrothermal manifestations. The existence and strike of the fracture zones was independently confirmed by the occurrence of historical disastrous earthquakes.
uma 8 uu amu a a aa a auu an¶rt;u a mu muma um a¶rt;a. u n¶rt; nu u uua a nmu, mua, u auaaua m¶rt; a . mau mu auu n¶rt;m¶rt;am a¶rt;u umuu aum mu u nmau nmu, mmu, au uu¶rt;mau nuu.


Visiting professors at Instituto Geofísico and Facultad de Geología, Minas y Petróleos, Escuela Politécnica Nacional, Quito (Ecuador).  相似文献   

3.
a¶rt;a ma nu an u u (SID) u nu n a (a n¶rt; au) mu 1965–1975 . u u SID na¶rt;am nau, mum u nm R.  相似文献   

4.
¶rt;naa, m ma um uu maunuu m am muu ¶rt;uauu um. nua a mau ammama a, n¶rt; mnu ma u u au uu u¶rt;mu.  相似文献   

5.
Résumé On commence par définir le creusement et le comblement d'une fonctionp(, t) du tempst et des points (, ) d'une surface régulière fermée en se donnant, sur cette surface, un vecteur vitesse d'advection ou de transfert tangent à . Le creusement (ou le comblement) est la variation dep sur les particules fictives se déplaçant constamment et partout à la vitesse , A chaque vecteur et pour un mêmep(, ,t) correspond naturellement une fonction creusementC (, ,t) admissible a priori; mais une condition analytique très générale (l'intégrale du creusement sur toute la surface fermée du champ est nulle à chaque instant), à laquelle satisfont les fonctions de perturbation sur les surfaces géopotentielles, permet de restreindre beaucoup la généralité des vecteurs d'advection admissibles a priori et conduit à des vecteurs de la forme: , oùT est un scalaire régulier, () une fonction régulière de la latitude , le vecteur unitaire des verticales ascendantes etR/2 une constante. Ces vecteurs sont donc une généralisation naturelle des vitesses géostrophiques attachées à tout scalaire régulier. Dans le cas oùp(, ,t) est la perturbation de la pression sur la surface du géoïde, le vecteur d'advection par rapport auquel on doit définir le creusement est précisément une vitesse géostrophique: on a alors ()=sin etT un certain champ bien défini de température moyenne.On déduit ensuite une formule générale de géométrie et de cinématique différentielles reliant la vitesse de déplacement d'un centre ou d'un col d'un champp(, ,t) à son champ de creusementC (, ,t) et au vecteur d'advection correspondant. Cette formule peut être transformée et prend la forme d'une relation générale entre le creusement (ou le comblement) d'un centre ou d'un col et la vitesse de son déplacement, sans que le vecteur d'advection intervienne explicitement. On analyse alors les conséquences de ces formules dans les cas suivants: 1o) perturbations circulaires dans le voisinage du centre; 2o) perturbations ayant, dans le voisinage du centre, un axe de symétrie normal ou tangent à la vitesse du centre; 3o) évolution normale des cyclones tropicaux.Finalement, on examine les relations qui existent entre le creusement ou le comblement d'un champ, le vecteur d'advection et la configuration des iso-lignes du champ dans le voisinage d'un centre.Ces considérations permettent d'expliquer plusieurs propriétés bien connues du comportement des perturbations dans différentes régions.
Summary The deepening and filling (development) of a functionp(, ,t) of the timet and the points (, ) of a regular closed surface is first of all defined, in respect to a given advection or transfer velocity field tangent to , as the variation ofp on any fictitious particle moving constantly and everywhere with the velocity . For a givenp(, ,t) and to any there corresponds a well defined development fieldC (, ,t). All theseC fields are a priori admissible, but a very general analytical condition of the perturbation fields in synoptic meteorology (the integral of the development fieldC (, ,t) on any geopotential surface vanishes at any moment), leads to an important restriction to advection vectors of the form: , whereT is any regular scalar, () any regular function of latitude, the unit vector of the ascending verticals andR/2 a constant. These vectors are a natural generalisation of the geostrophic velocities attached to any regular scalar. Whenp(, ,t) is the pressure perturbation at sea level, its development must be defined in respect to a geostrophic advection vector belonging to the above defined class of vectors with ()=sin andT a well defined mean temperature field.A general formula of the differential geometry and kinematics ofp(, ,t) is then derived, giving the velocity of any centre and col of ap(, ,t) as a function of the advection vector and the corresponding development fieldC (, ,t). This formula can be transformed and takes the form of a general relation between the deepening (and filling) of a centre (or a col) of ap(, ,t) and its displament velocity, the advection vector appearing no more explicitly. A detailed analysis of the consequences of these formulae is then given for the following cases: 1o) circular perturbations in the vicinity of a centre; 2o) perturbations having, in the vicinity of a centre, an axis of symmetry normal or tangent to the velocity of the centre; 3o) normal evolution of the tropical cyclones.Finally, the relations between the developmentC (, ,t) of a fieldp(, ,t), the advection velocity vector and the configuration of the iso-lines in the vicinity of a centre are analysed.These theoretical results give a rational explanation of several well known properties of the behaviour of the perturbations in different geographical regions.


Communication à la 2ème Assemblée de la «Società Italiana di Geofisica e Meteorologia» (Gênes, 23–25 Avril 1954).  相似文献   

6.
Summary The data on geopotential heights and temperatures at 7 pressure levels between 1000-10 hPa above Berlin(52.5 °N, 13.4 °E) are analysed for the winters of 1963–1973. No demonstrable effect of the interplanetary magnetic field sector boundary crossing (IMF SBC) is found in the lower and middle stratosphere, but there is a demonstrable effect in the middle troposphere at the 500 hPa level. This effect is less important than the IMF SBC effect in the tropospheric vorticity area index and seems to be of a different type.
auum ¶rt;a nnmua m u mnam a 7 nm ¶rt;au ¶rt; 1000-10 a a¶rt; u(52,5 °.., 13,4 °.¶rt;.) ¶rt; u 1963–1973. ua ¶rt;aam m nu mau nam aum n( ) ¶rt;a amu u u ¶rt; mam, ma m a¶rt; ¶rt; mn a 500 a. mm m a, m u¶rt; na¶rt;u aumu am, u am m ¶rt; muna.
  相似文献   

7.
The authors conducted a Rn222 survey in wells of the Larderello geothermal field (Italy) and observed considerable variations in concentrations. Simple models show that flow-rate plays an important part in the Rn222 content of each well, as it directly affects the fluid transit time in the reservoirs. Rn222 has been sampled from two wells of the Serrazzano area during flow-rate drawdown tests. The apparent volume of the steam reservoir of each of these two wells has been estimated from the Rn222 concentration versus flow-rate curves.List of symbols Q Flow-rate (kg h–1) - Decay constant of Rn222 (=7.553×10–3 h–1) - Porosity of the reservoir (volume of fluid/volume of rock) - 1 Density of the fluid in the reservoir (kg m–3) - 2 Density of the rock in the reservoir (kg m–3) - M Stationary mass of fluid filling the reservoir (kg). - E Emanating power of the rock in the reservoir (nCi kg rock –1 h–1). - P Production rate of Rn222 in the reservoir: number of atoms of Rn222 (divided by 1.764×107) transferred by the rock to the mass unit of fluid per unit time (nCi kg fluid –1 h–1). - N Specific concentration of Rn222 in the fluid (nCi kg–1) - Characteristic time of the steam reservoir at maximum flow-rate (=M/Q)  相似文献   

8.
a mam 10-mu u¶rt;au ¶rt;uauu nmu a anam. auum aam mua ¶rt;uu u nu amu uu, a , muu, u auauu n u mmu u uu umaa u ¶rt; nmu uuau.  相似文献   

9.
Summary An attempt is made to show possible ways of predicting radio wave absorption in the midlatitude lower ionosphere using relations between absorption and the intensity of solar ionizing radiation and/or common solar activity indices, and between absorption and f0F2.
aa mu nuau nu a¶rt;u ¶rt;um u u a mu ¶rt; nu u umum uuu uu (uu uu u¶rt;au amumu) u ¶rt; nu u f0F2.
  相似文献   

10.
Summary The effectiveness of recording seismic phenomena in the Kruné hory (Mts.) region in NW Bohemia by selected stations in the CSR, GDR and Poland has been estimated. Magnitude isolines of the weakest earthquakes, which can be localized and detected with an 0.9 probability, were calculated on the basis of the level of seismic disturbances at the individual stations and of the empirical dependence of the attenuation of seismic waves with distance.
a a mum umauu uu u amu ¶rt; ana¶rt; uu uau mauu a mumuu , u a a uu n a m¶rt; mau u nuu auumu amau uu m amu u auma uuuu aum¶rt; a a mu, m mm 0.9 auuam u aum.
  相似文献   

11.
Summary The optimization of the method of determining the addition constant of an EDM is discussed. The advantages of the optimization procedure from the point of view of efficiency and improvement of accuracy are reported.
nuuu ¶rt; n¶rt;u a¶rt;¶rt;uu n ¶rt;. u nu n u uu u nu u.
  相似文献   

12.
Summary The partial differential equations of electromagnetic induction in a 3-D Earth of inhomogeneous conductivity are reduced to a system of ordinary differential equations of the 2nd order for the spectral coefficients of the field.
au am nu¶rt; ¶rt; maum u¶rt;uu u m ¶rt;¶rt; n n¶rt;umu n¶rt; um ¶rt;uua au m n¶rt;a ¶rt; nma uum n.
  相似文献   

13.
u nu m¶rt;a a u u¶rt;a ¶rt;a muna nua a n umu mnuu ua.

Dedicated to Academician Alois Zátopek on His 65th Birthday  相似文献   

14.
mam u¶rt;m uu aumuu a m n uamu ¶rt;u nmu umu ¶rt;ua a maum ¶rt;a amu u. a um naa nu nu naama umuu , au a um aumu m n aau umuu mau aum n. aam, m mum au ¶rt;-amu a ma mu aum u u n a aumu m n.  相似文献   

15.
Summary Tests on the vertical vibrating table in the frequency range of70–110 Hz indicate that quartz gravity meters are10–100 times more sensitive at some frequencies than under low-frequency excitation. At high frequencies, the reading beam is at rest and deflected from the correct position. Slow fluctuations of amplitude and frequency near resonance could cause slow irregular motion of the beam with absence of low-frequency ground motion of sufficient intensity.
unmauaum a mua um¶rt; ¶rt;uana amm 70–110u mam, m a m ammaaum 10–100 a mum nu uamm au. u amm au u a¶rt;um n m mu m nu. ¶rt; auauu anum¶rt; u amm au uu aa m am uamm u ua ¶rt;a mmmm uamm au n ¶rt;mam umumu.
  相似文献   

16.
Janle  P.  Meissner  R. 《Surveys in Geophysics》1986,8(2):107-186
Geo-scientific planetary research of the last 25 years has revealed the global structure and evolution of the terrestrial planets Moon, Mercury, Venus and Mars. The evolution of the terrestrial bodies involves a differentiation into heavy metallic cores, Fe-and Mg-rich silicate mantles and light Ca, Al-rich silicate crusts early in the history of the solar system. Magnetic measurements yield a weak dipole field for Mercury, a very weak field (and local anomalies) for the Moon and no measurable field for Venus and mars. Seismic studies of the Moon show a crust-mantle boundary at an average depth of 60 km for the front side, P- and S-wave velocities around 8 respectively 4.5 km s–1 in the mantle and a considerable S-wave attenuation below a depth of 1000 km. Satellite gravity permits the study of lateral density variations in the lithosphere. Additional contributions come from photogeology, orbital particle, x-and -ray measurements, radar and petrology.The cratered surfaces of the smaller bodies Moon and Mercury have been mainly shaped by meteorite impacts followed by a period of volcanic flows into the impact basins until about 3×109 yr before present. Mars in addition shows a more developed surface. Its northern half is dominated by subsidence and younger volcanic flows. It even shows a graben system (rift) in the equatorial region. Large channels and relics of permafrost attest the role of water for the erosional history. Venus, the most developed body except Earth, shows many indications of volcanism, grabens (rifts) and at least at northern latitudes collisional belts, i.e. mountain ranges, suggesting a limited plate tectonic process with a possible shallow subduction.List of Symbols and Abbreviations a=R e mean equatorial radius (km) - A(r, t) heat production by radioactive elements (W m–3) - A, B equatorial moments of inertia - b polar radius (km) - complex amplitude of bathymetry in the wave number (K) domain (m) - C polar moment of inertia - C Fe moment of inertia of metallic core - C Si moment of inertia of silicate mantle - C p heat capacity at constant pressure (JK–1 mole) - C nm,J nm,S nm harmonic coefficients of degreen and orderm - C/(MR e 2 ) factor of moment of inertia - d distance (km) - d nondimensional radius of disc load of elastic bending model - D diameter of crater (km) - D flexural rigidity (dyn cm) - E Young modulus (dyn cm–2) - E maximum strain energy - E energy loss during time interval t - f frequency (Hz) - f flattening - F magnetic field strength (Oe) (1 Oe=79.58A m–1) - g acceleration or gravity (cms–2) or (mGal) (1mGal=10–3cms–2) - mean acceleration - g e equatorial surface gravity - complex amplitude of gravity anomaly in the wave number (K) domain - g free air gravity anomaly (FAA) - g Bouguer gravity anomaly - g t gravity attraction of the topography - G gravitational constant,G=6.67×10–11 m3kg–1s–2 - GM planetocentric gravitational constant - h relation of centrifugal acceleration (2 R e ) to surface acceleration (g e ) at the equator - J magnetic flux density (magnetic field) (T) (1T=109 nT=109 =104G (Gauss)) - J 2 oblateness - J nm seeC nm - k (0) (zero) pressure bulk modulus (Pa) (Pascal, 1 Pa=1 Nm–2) - K wave number (km–1) - K * thermal conductivity (Jm–1s–1K–1) - L thickness of elastic lithosphere (km) - M mas of planet (kg) - M Fe mass of metallic core - M Si mass of silicate mantle - M(r) fractional mass of planet with fractional radiusr - m magnetic dipole moment (Am2) (1Am2=103Gcm3) - m b body wave magnitude - N crater frequency (km–2) - N(D) cumulative number of cumulative frequency of craters with diameters D - P pressure (Pa) (1Pa=1Nm–2=10–5 bar) - P z vertical (lithostatic) stress, see also z (Pa) - P n m (cos) Legendre polynomial - q surface load (dyn cm–2) - Q seismic quality factor, 2E/E - Q s ,Q p seismic quality factor derived from seismic S-and P-waves - R=R 0 mean radius of the planet (km) (2a+b)/3 - R e =a mean equatorial radius of the planet - r distance from the center of the planet (fractional radius) - r Fe radius of metallic core - S nm seeC nm - t time and age in a (years), d (days), h (hours), min (minutes), s (seconds) - T mean crustal thickness from Airy isostatic gravity models (km) - T temperature (°C or K) (0°C=273.15K) - T m solidus temperature - T sideral period of rotation in d (days), h (hours), min (minutes), s (seconds), =2/T - U external potential field of gravity of a planet - V volume of planet - V p ,V s compressional (P), shear (S) wave velocity, respectively (kms–1) - w deflection of lithosphere from elastic bending models (km) - z, Z depth (km) - z (K) admittance function (mGal m–1) - thermal expansion (°C–1) - viscosity (poise) (1 poise=1gcm–1s–1) - co-latitude (90°-) - longitude - Poisson ratio - density (g cm–3) - mean density - 0 zero pressure density - m , Si average density of silicate mantle (fluid interior) - average density of metallic core - t , top density of the topography - density difference between crustal and mantle material - electrical conductivity (–1 m–1) - r , radial and azimuthal surface stress of axisymmetric load (Pa) - z vertical (lithostatic) stress (seeP z ) - II second invariant of stress deviation tensor - latitude - angular velocity of a planet (=2/T) - ages in years (a), generally 0 years is present - B.P. before present - FAA Free Air Gravity Anomaly (see g - HFT High Frequency Teleseismic event - LTP Lunar Transient Phenomenon - LOS Line-Of-Sight - NRM Natural Remanent Magnetization Contribution No. 309, Institut für Geophysik der Universität, Kiel, F.R.G.  相似文献   

17.
Summary The interpretation of surface seismic waves records is rather complicated as they include a superposition of oscillations of the fundamental mode and higher modes. Besides recorded oscillations depend on spectral characteristics of motions in earthquakes sources. The consideration of these problems is based on results of surface waves two-dimensional modelling [1]3. Some physical ideas about their formation deals with the change of the nature of the oscillation propagating with dispersion. This report represents a condensate of several independent works. , , . , . , . () . .Scientific communication presented to the IASPEI Assembly, Madrid, 1969.  相似文献   

18.
Riassunto L'Autore dimostra che, nel sistema di coordinate polari , , , si possono determinare un numeros di funzioni della sola variabile :Q 1,Q 3, ....Q 2s–1 tali che la sommatoria delleQ 2i–1/2i–1 rappresenti il potenzialeV di un geoide di rotazione. La condizione di armonicità determina ciascunaQ (che si riduce a un polinomio nelle potenze di sen ) a meno di una costante arbitraria; si dispone pertanto dis costanti che servono per soddisfare la natura dellaV sulla superficie del geoide. Come esempio l'Autore ha determinato la gravità sul geoide sferico, confermando i risultati delSomigliana, e su uno sferoide generico dove ha ritrovato la relazione diClairaut.
Summary The Author proofs that, in the system of polar coordinates , , , it is possible to determine a numbers of functions only of the variable :Q 1,Q 3 ....Q 2s–1 in such a way as to make the summatory of theQ 2i–1/2i–1 represent the potential function of a rotational geoid. The condition of harmonicity determines, saving an arbitrary constant, each of theQ which is reduced to a polynom developed by the sin powers; therefore one disposes of a number of constants to make use for satisfing theV on the geoid. To illustrate his theory the Author determines the gravity on the spherical geoid, thus confirmingSomigliana's formulas and on a spheroidal on which he pointed outClairaut's relations.
  相似文献   

19.
Strong motion (SM) data of six Mexican subduction zone earthquakes (6.4M S8.1) recorded near the epicentral zone are analyzed to estimate their far-field source acceleration spectra at higher frequencies (f0.3 Hz). Apart from the usual corrections such as geometrical spreading (1/R), average radiation pattern (0.6), free surface amplification (a factor of 2), and equal partitioning of the energy into two orthogonal horizontal components (a factor of 1/ ), the observed spectra are corrected for a frequency dependentQ(Q=100f), a site dependent filter (e kf ), and amplification ofS waves near the surface (a factor of about 2 atf2Hz). We takeR as the average distance from the rupture area to the site. If we model the high frequency plateau (f1 Hz) of the source spectra, by a point source –2-model, and interpret them in terms of Brune's model we obtain between 50 and 100 bars for all earthquakes. The low-frequency broadband teleseismicP wave spectra, corrected witht *=1.0 s, agrees within a factor of two with SM source spectra near 1 Hz. The –2-model is inadequate to explain the observed source spectra in a broad frequency range; these resemble spectra given byGusev (1983) with some differences.SM source acceleration spectra require significant corrections to explain observed spectra and RMS acceleration (arms) (a) at farther coastal sites for extended sources due to directivity effect and (b) at inland sites (100R200 km) because of unaccounted path and site amplification and/or invalidity of body-wave approximation. The observed spectra and arms at these sites are significantly greater than the predicted values from the estimated source spectra.  相似文献   

20.
Summary Teleseismic P residuals calculated for waves arriving from various azimuths and angles of incidence, and a 3-D inversion of the residuals provided the basis for characterizing the uppermost mantle structure beneath Bulgaria. The Moesian Platform and the Rhodopean Massif are two different blocks characterized by a lithosphere thickness of about 130–140 km with a zone of lithosphere thinning along their contact. Both units have opposite patterns of the directional dependence of relatively high and low P velocities. This directional dependence is interpreted by dipping anisotropic structures in the subcrustal lithosphere, which probably represent remnants of paleosubductions of an old oceanic lithosphere.
auma u nu¶rt;u n¶rt; au aumau u au. a uu mu ¶rt;am ¶rt; aamuauu mm amuu n¶rt; au. uua nama u ¶rt;nu au, ¶rt;a au a mu um nuuum 130–140 ¶rt; uma m ¶rt; u mama. a a aamua nmun ana auum mum u u mu . ma anaa auum umnmuaa a nu aumn mm amu. mu mm n¶rt;maum a mamu na¶rt;u ma au um.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号