首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
定常波和瞬变波在亚洲季风区大气水分循环中的作用   总被引:12,自引:0,他引:12  
伊兰  陶诗言 《气象学报》1997,55(5):532-544
利用欧洲中心ECMWF10a逐日资料,对定常波和瞬变波在亚洲季风区大气水分循环中的作用进行了计算分析。结果表明,瞬变涡动总把水汽从高水汽含量区送到低水汽含量区,实现与平均环流相反的输送,维持了热带地区和中高纬地区水汽的平衡。夏季定常涡动输送的经向分量是将水汽从热带向副热带输送的主要机制,而瞬变涡动输送的经向分量则是把水汽从副热带输送到中高纬的主要机制。由于季风经圈环流的存在,使得亚洲季风区的热带地区为重要的水汽源区,而其副热带和中纬度地区是水汽汇区,这与同纬度其它地区相反。  相似文献   

2.
基于1981—2020年日本气象厅(Japanese Meteorological Agency,JMA)再分析资料JRA-55(Japanese 55-year Reanalysis)以及美国国家气候中心(Climate Prediction Center,CPC)卫星降水资料,分析了瞬变涡旋活动特征及其对我国东部夏季降水异常的影响,并对其可能机制展开讨论。研究表明,蒙古国至我国东北和华北地区既是瞬变涡旋活动的活跃区域,也是其输送的大值区域,其中瞬变涡旋对热量和水汽的经向输送占主导地位,是中高纬热量和水汽的重要来源。根据瞬变涡旋经向热量和水汽输送变率的强度确定了瞬变热量和水汽输送的关键区域,分别为(45°~60°N,100°~130°E)和(35°~50°N,100°~120°E),并定义了瞬变热量和水汽指数,其与我国东部夏季降水异常的回归结果表明,瞬变涡旋活动对我国东部夏季降水存在显著影响。中高纬天气尺度瞬变涡旋对热量、水汽和动量的输送异常,通过波流相互作用过程,对平均流形成了反馈,导致季节平均环流、水汽分布和水汽输送的异常,从而在热力、动力和水汽条件的共同作用下引起降水异常。  相似文献   

3.
利用BOMEX(巴巴多斯海洋与气象学试验)的探空资料和LEM(大涡模式),通过改变LEM水平分辨率的敏感性数值试验,对比分析不同尺度的湍涡对信风积云边界层中混合层和云层的结构、演变以及对流形式和强度的影响。结果表明,水平分辨率较高时模拟的湍涡尺度较小、混合层顶的夹卷作用较强,模拟的混合层较暖、较干,而且模拟的对流泡尺度较小、强度较大,能够模拟出较精细的边界层结构;而水平分辨率较低时则相反。模拟的湍涡尺度对海洋信风区边界层积云中液态水混合比的模拟结果影响较大:LEM模拟的湍涡尺度较小时模拟的信风积云形成的时间较早、云顶高度较高,单个云块的体积较小但数目较多,液态水含量较高;而模拟的湍涡尺度较大时则相反。虽然水平分辨率为50 m和125 m的试验都能模拟出较精细的信风边界层中混合层、云层的结构和演变特征,但是,考虑到提高分辨率在模拟过程中产生的噪音信号对结果的影响以及计算时间等问题,LEM采用125 m的水平网格距是对海洋信风边界层积云对流模拟较为理想的选择。   相似文献   

4.
Atmospheric moisture transport from the Atlantic to the Pacific basin plays an important role in regulating North Atlantic salinity and thus the strength of the thermohaline circulation. Potential changes in the strength of this moisture transport are investigated for two different climate-change scenarios: North Atlantic cooling representative of Heinrich events, and increased greenhouse gas (GHG) forcing. The effect of North Atlantic cooling is studied using a coupled regional model with comparatively high resolution that successfully simulates Central American gap winds and other important aspects of the region. Cooler North Atlantic sea surface temperature (SST) in this model leads to a regional decrease of atmospheric moisture but also to an increase in wind speed across Central America via an anomalous pressure gradient. The latter effect dominates, resulting in a 0.13 Sv (1 Sv = 106 m3 s?1) increase in overall moisture transport to the Pacific basin. In fresh water forcing simulations with four different general circulation models, the wind speed effect is also present but not strong enough to completely offset the effect of moisture decrease except in one model. The influence of GHG forcing is studied using simulations from the Intergovernmental Panel on Climate Change archive. In these simulations atmospheric moisture increases globally, resulting in an increase of moisture transport by 0.25 Sv from the Atlantic to Pacific. Thus, in both scenarios, moisture transport changes act to stabilize the thermohaline circulation. The notion that the Andes effectively block moisture transport from the Atlantic to the Pacific basin is not supported by the simulations and atmospheric reanalyses examined here. This indicates that such a blocking effect does not exist or else that higher resolution is needed to adequately represent the steep orography of the Andes.  相似文献   

5.
Parametrisations of meridional energy and moisture transport used in zonally averaged climate models are validated using reanalysis data and results from a doubling CO2-experiment from a general circulation model. Global meridional fluxes of moisture and sensible heat are calculated by integrating surface and top-of-the-atmosphere vertical fluxes from one pole to the other. The parametrisations include an eddy-diffusion term, representing down-gradient transport of specific humidity and temperature due to the transient atmospheric eddies at mid- and high latitudes, and simple representations of the mean meridional circulation. Qualitative and quantitative agreement between the increased hydrological cycle in the 2×CO2-run from the GCM and the parametrisation is found. The performance for the sensible heat flux shows larger differences to the GCM results, particularly at low latitudes. Seasonal variations of the moisture and sensible heat transport are well captured by parametrisations including the influence of the mean meridional circulation. Interannual variability cannot be simulated. An examination of the parametrisations on different spatial scales suggests that they should not be used for small scales. Furthermore, two closures for the zonal distribution of precipitation were examined. They are used in zonally averaged atmosphere models coupled to an ocean model with different ocean basins at one latitudinal belt. An assessment of both the reanalysis data and the GCM results shows that both closures exhibit very similar behaviour and are valid in the long-term mean and seasonal cycle. Interannual variability is not captured well. They become invalid for spatial scales smaller than 10. Received: 30 November 1998 / Accepted: 4 July 1999  相似文献   

6.
长江流域水分收支以及再分析资料可用性分析   总被引:9,自引:0,他引:9  
赵瑞霞  吴国雄 《气象学报》2007,65(3):416-427
首先利用实测资料定量计算了长江流域水分收支的各分量,包括降水、径流、蒸发、水汽辐合等,分析其季节循环、年际变化以及线性趋势变化。结果表明,多年平均该流域是水汽汇区,主要来自平均流输送造成的水汽辐合,而与天气过程密切相关的瞬变波则主要造成流域的水汽辐散。蒸发所占比例接近于径流,对流域水分循环十分重要。大部分要素的季节变化和年际变化都很大,只有蒸发和大气含水量的年际变化较小。降水和平均流输送造成的水汽辐合一般在6月达到年内最大,12月达到年内最小,而径流和大气含水量则一般滞后1个月于7月达到年内最大,1月降为年内最小。1958—1983年,夏半年降水略微增加,冬半年略微减少,各月实测径流为弱的增长趋势,但均不显著,年平均蒸发亦无显著的趋势变化。然后将实测资料同ECMWF及NCEP/NCAR再分析资料作进一步对比分析,以检验两套再分析资料对长江流域水分循环的描述能力。在量值上,NCEP/NCAR再分析资料中的降水、蒸发、径流均比实测偏大很多,大气含水量及由平均流输送所造成的水汽辐合则偏小很多;ECMWF再分析资料中的降水量、径流量基本上与实测接近,蒸发量偏大,大气含水量及由平均流输送所造成的水汽辐合偏小,但比NCEP/NCAR再分析资料要接近实测。另外,该两套再分析资料均可以较好地描述长江流域水分收支的季节循环和年际变化,而且同样是ECMWF再分析资料与实测资料的一致性更好。但是两套再分析资料在1958—1983年均存在十分夸张的线性趋势变化,尤其是ECMWF再分析资料。  相似文献   

7.
Tracer transport in the atmosphere is controlled not only by synoptic-scale to mesoscale weather disturbances but also by microscale boundary-layer processes especially under fair-weather conditions. The present study investigates numerically the diurnal variation of boundary-layer convection and cumulus clouds and their role in transporting tracers by conducting high-resolution simulations that explicitly resolve turbulent eddies. The transport of dust aerosols in a desert area under two distinct stability conditions is specifically examined. Convection plays a significant role in transporting dust upward; in other words, the vertical depth of the dust transport is critically determined by the depth of convection. Deep convection is effective in transporting dust into the free atmosphere. The early morning stratification strongly regulates the temporal evolution and the vertical growth of convection and therefore the amount of tracer emission and transport. A sensitivity to model resolution of O (1 km) in a cloud-resolving simulation range is also examined. A proper parameterization for activating microscale convection is required for representing the diurnal variation of convection and tracer transport.  相似文献   

8.
A multilayer canopy model of a pine forest is used to investigate the sensitivity of the water balance of the wet canopy to variations in meteorological input. The multilayer model does not take into account large-scale eddies, which are now considered to be of importance to canopy transport. It does, however, provide realistic simulations of wet canopy water balance and often predicts interception loss rates higher than those predicted by a unilayer model for the same meteorological input. Stable layers both within and above the canopy are often simulated during rainfall events, and these may help to spontaneously generate large-scale eddies or waves within forest canopies. The sensitivity study for a wet canopy suggests that low vapour pressure deficits and low wind speeds are associated with unstable surface conditions, and increasing values of both variables are associated with decreasing canopy drainage values and increasing evaporative losses. Low short- or long-wave radiation inputs are associated with stable surface conditions, and increasing values of both variables are associated with decreasing canopy drainage values and increasing evaporative losses. Increasing temperature is associated with increasing surface stability and increasing canopy drainage and decreasing evaporative losses. In real situations the tendency for increasing temperature to cause surface stability and decreased evaporative loss is probably compensated by the opposite effects of increasing short- or long-wave radiation. The model simulations suggest that wet forest canopies may be better ventilated at low temperatures, if other meteorological conditions are constant.  相似文献   

9.
朱玮  刘芸芸  何金海 《气象科学》2007,27(2):155-161
利用NCEP/NCAR1957-2001年45a逐日的再分析资料,从地面开始积分计算整层的水汽输送通量,减去平均场的水汽的输送量,从而得到扰动水汽输送量,初步讨论了我国江淮地区水汽输送场的季节变化特征,并分析了我国江淮梅雨期旱、涝年平均场水汽输送与扰动场水汽输送的差异。分析发现:扰动场水汽输送与平均场水汽输送差别较大,源自孟加拉湾的平均水汽输送对我国东部地区的降水影响较大,但该地区的扰动水汽输送却主要是影响印度北部地区。而影响我国江淮地区的扰动场水汽输送主要来自于南海地区。源自西太平洋和我国北方的偏强的水汽输送是造成江淮梅雨期降水偏多的主要因子,扰动场水汽输送在我国江淮地区梅雨期降水异常时期与平均场水汽输送基本呈反方向输送,其差值散度场与平均场水汽输送差值散度则为反位相分布,因此说扰动场的水汽输送对平均场的水汽输送起削弱作用。  相似文献   

10.
The impact of numerical modeling of moisture transport on the simulation of the seasonal mean pattern of precipitation in the tropics is studied. The NCAR CCM2 with spectral and semi-Lagrangian moisture transport has been used for this purpose. The differences in the numerical modeling of moisture transport are found to have a significant impact on the simulation of the seasonal mean patterns. The major differences while using the spectral method (vis-a-vis the semi-Lagrangian method) are (1) a decrease in rainfall over the Indian monsoon region, (2) a decrease in rainfall over the west Pacific region and (3) an increase in rainfall over the central and east Pacific regions. There are substantial differences in the amount of precipitable water vapor simulated by the two moisture transport techniques. It is shown that the difference in precipitable water vapor between the two simulations is associated with changes in the vertical moist static stability (VMS) of the atmosphere, and differences in the simulated precipitation patterns. Received: 7 August 1998 / Accepted: 15 October 1999  相似文献   

11.
本文利用NCEP/NCAR再分析资料和中国2374站日降水资料,通过水汽收支方程分解方法分析了华南夏季降水在1993~2002年时段年代际增多以及2003~2013年时段年代际减少的水汽输送特征及其成因。结果表明:1993~2002年时段(2003~2013年时段),局地环流导致异常下沉(上升)气流,南亚高压偏东(偏西)和西太平洋副热带高压(简称副高)偏西(偏东),菲律宾及副高西南侧水汽输送加强(减弱),华南地区低层出现强的水汽辐合(辐散),导致降水偏多(偏少)。华南地区夏季降水两次年代际变化主要与风速变化引起的水汽输送动力散度项的异常有关,同时还受到与比湿变化引起的水汽输送热力散度项异常、及天气尺度的涡旋引起的水汽输送涡流散度项异常影响。此外,研究发现水汽输送的异常与环流和海温异常均密切相关。  相似文献   

12.
The ability of an atmospheric general circulation model to reproduce fundamental features of the wintertime extratropical Southern Hemisphere (SH) circulation is evaluated with emphasis on the daily variability of the SH mean flow and the mean flow-transient perturbations interaction. Two 10-year simulations using a new version of the LMDZ GCM with a stretched grid scheme centered at 45 °S and forced by climatological SST are performed: a high (144Ꮡ) and low (64Ꭹ) horizontal resolution runs. The performance of both simulations was determined by comparing several simulated fields (zonal wind, temperature, kinetic energy, transient eddy momentum and heat fluxes, Eliassen-Palm fluxes, Eady growth rate and baroclinic conversion term) against the European Centre for Medium Range Weather Forecast reanalyses (ERA). High and low-resolution simulations are similar in many respects; in particular, both experiments reproduce the main patterns of the southern extratropical large-scale circulation satisfactorily. Increasing resolution does not improve universally some spurious aspects of the low resolution simulation (e.g. the cold bias in the high polar troposphere, the debilitated subtropical jet, the low baroclinic conversion rate). Those aspects present little sensitivity to the model resolution. The interaction between transient eddies and zonal mean flow are examined. The low-resolution experiment is able to qualitatively represent the acceleration/deceleration of the mean flow by transient perturbations, south/north of 30 °S with an accuracy similar to that of the high-resolution experiment. Although both experiments represent the baroclinic structure of the mean flow satisfactorily, the model underestimates some transient properties due to the underestimation of the baroclinic conversion term in middle latitudes. Such misrepresentation does not improve with increasing resolution and is related to the relatively weak meridional temperature gradient and the inadequate geographical distribution of the eddy heat fluxes. In particular, the eddy kinetic energy is always underestimated. Eddy kinetic energy does not improve convincingly with increasing resolution, suggesting that the adequate representation of the storm tracks is highly influenced by the physical parametrizations.  相似文献   

13.
利用1958~1997年NCEP/NCAR一日四次的风场再分析资料,系统地分析了季节平均西风角动量(即u角动量)经向、垂直输送通量及其三个分量(平均经圈环流、定常波、瞬变涡输送通量)的气候特征,特别是讨论了12~2月、6~8月它们与东、西风带、副热带西风急流、极夜急流之间的联系。结果表明:(1)包含纬度因子的角动量通量与动量通量在高纬地区存在显著差别,高纬对流层上部的强动量输送中心在角动量通量中不明显。而u角动量强经向输送主要在中低纬对流层顶附近和冬半球高纬平流层顶附近,副热带西风急流和极夜西风急流均位于u角动量强向极输送中心及其高纬一侧的辐合区中。(2)发现三个输送分量对急流维持的作用随纬度、季节不同。北半球冬季(夏季)的副热带西风急流主要由平均经圈环流(强度相当的定常波和瞬变涡)强经向输送及辐合维持;南半球西风急流全年均由平均经圈环流和瞬变涡旋输送及辐合维持;冬半球中平流层极夜急流主要由定常波、瞬变涡旋输送及其辐合共同维持。(3)热带东风区是牵连角动量(即Ω角动量)的高值区,它主要由平均经圈环流向对流层上部输送;冬半球副热带及中纬西风区存在u角动量垂直输送的切变区,它主要由平均经圈环流和瞬变涡旋完成;热带对流层顶附近有u角动量的定常波弱向下输送。  相似文献   

14.
An increasing number of proxy records, which are related to changes in the hydrological cycle, have been collected for climate reconstructions of the last millennium. There has been, however, little attempt to test climate models with such proxy records or to interpret proxy records using climate model simulations. In the present study, we analyze the hydrological changes between three different types of experiments: a present-day control, a perpetual AD 1640, and an ensemble of six transient Maunder Minimum (AD 1640–1715) simulations. Atmospheric moisture transport is investigated in terms of contributions of specific humidity and circulation changes. The study points out the importance of the specific humidity contribution to changes in moisture transport reflected in hydrological proxy records. The moisture budget of the western tropical Pacific is also investigated to aid the interpretation of a proxy record in this specific region. The present-day freshening of the western tropical Pacific, compared to the Maunder Minimum, is explained by the increased zonal moisture transport via trade winds, mainly due to the increased amount of atmospheric water vapor content in the warming world. Due to the existence of several uncertainty factors, such as forcing reconstructions, the link between the model simulations and proxy records is, however, not definitive, but the thermal contribution to hydrological proxy records is important and not limited to the Maunder Minimum period.  相似文献   

15.
A common mode of convection within the atmospheric boundary layer, mesoscale cellular convection (MCC), assumes the form of an organized array of three-dimensional polygonal cells. This study employs aircraft data, collected off the coast of California during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE), to investigate the closed cell variety of MCC. Forty-five transects of closed marine mesoscale convective cells are utilized in this study. Data from these transects are used to calculate first-order and scale-dependent second-order kinematic, thermodynamic, and radiation statistics. From these statistics, a conceptual model of closed MCC is constructed detailing the horizontal and vertical structure of the cells in coupled as well as decoupled boundary-layer environments.Mesoscale convective cells not only have a profound influence on the radiation budget of their environment, but also play a key role in governing the exchange of heat, moisture, and momentum between the atmosphere and the surface. During FIRE, the MCC-scale structures were found to be buoyantly-driven above cloud base and driven by perturbation pressure forces below. Microscale eddies generally worked in tandem with these MCC-scale structures to transport heat and moisture vertically throughout the cells. Microscale eddies were responsible for most of this transport within the surface layer, while MCC-scale structures performed most of the transport at mid-levels within the cells.  相似文献   

16.
Mid-latitude eddies are an important component of the climatic system due to their role in transporting heat, moisture and momentum from the tropics to the poles, and also for the precipitation associated with their fronts, especially in winter. We study northern hemisphere storm-tracks at the Last Glacial Maximum (LGM) and their influence on precipitation using ocean-atmosphere general circulation model (OAGCM) simulations from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2). The difference with PMIP1 results in terms of sea-surface temperature forcing, fundamental for storm-track dynamics, is large, especially in the eastern North Atlantic where sea-ice extends less to the south in OAGCMs compared to atmospheric-only GCMs. Our analyses of the physics of the eddies are based on the equations of eddy energetics. All models simulate a consistent southeastward shift of the North Pacific storm-track in winter, related to a similar displacement of the jet stream, partly forced by the eddies themselves. Precipitation anomalies are consistent with storm-track changes, with a southeastward displacement of the North Pacific precipitation pattern. The common features of North Atlantic changes in the LGM simulations consist of a thinning of the storm-track in its western part and an amplification of synoptic activity to the southeast, in the region between the Azores Islands and the Iberian Peninsula, which reflects on precipitation. This southeastward extension is related to a similar displacement of the jet, partly forced by the eddies. In the western North Atlantic, the synoptic activity anomalies are at first order related to baroclinic generation term anomalies, but the mean-flow baroclinicity increase due to the presence of the Laurentide ice-sheet is partly balanced by a loss of eddy efficiency to convert energy from the mean flow. Moisture availability in this region is greatly reduced due to more advection of dry polar air by stationary waves, leading to less synoptic-scale latent heat release and hence less precipitation also. In terms of seasonality, the stormy season is shifted later in the year by a few days to a month depending on the season and the model considered. This shift does not directly reflect on the first-order seasonal cycle of precipitation, which also depends on other mechanisms, especially in summer.  相似文献   

17.
The South China Sea(SCS) is an eddy-active area. Composite analyses based on 438 mesoscale ocean eddies during 2000–2012 revealed the status of the atmospheric boundary layer is influenced remarkably by such eddies. The results showed cold-core cyclonic(warm-core anticyclonic) eddies tend to cool(warm) the overlying atmosphere and cause surface winds to decelerate(accelerate). More than 5% of the total variance of turbulent heat fluxes, surface wind speed and evaporation rate are induced by mesoscale eddies. Furthermore, mesoscale eddies locally affect the columnar water vapor, cloud liquid water, and rain rate. Dynamical analyses indicated that both variations of atmospheric boundary layer stability and sea level pressure are responsible for atmospheric anomalies over mesoscale eddies. To reveal further details about the mechanisms of atmospheric responses to mesoscale eddies, atmospheric manifestations over a pair of cold and warm eddies in the southwestern SCS were simulated. Eddy-induced heat flux anomalies lead to changes in atmospheric stability. Thus, anomalous turbulence kinetic energy and friction velocity arise over the eddy dipole, which reduce(enhance) the vertical momentum transport over the cold(warm) eddy, resulting in the decrease(increase) of sea surface wind. Diagnoses of the model's momentum balance suggested that wind speed anomalies directly over the eddy dipole are dominated by vertical mixing terms within the atmospheric boundary layer, while wind anomalies on the edges of eddies are produced by atmospheric pressure gradient forces and atmospheric horizontal advection terms.  相似文献   

18.
Impact of ocean model resolution on CCSM climate simulations   总被引:1,自引:1,他引:0  
The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5)—the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5° atmosphere component (zonal resolution 0.625 meridional resolution 0.5°; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2° and meridional resolution varying from 0.27° at the equator to 0.54° in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1° ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2?°C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the interannual temperature variability is increased with the resolved eddies, and a notable increases in the amplitude of the El Ni?o and the Southern Oscillation is also detected. Changes in global temperature anomaly teleconnections and local air-sea feedbacks are also documented and show large changes in ocean–atmosphere coupling. In particular, local air-sea feedbacks are significantly modified by the increased ocean resolution. In the high-resolution simulation in the extra-tropics there is compelling evidence of stronger forcing of the atmosphere by SST variability arising from ocean dynamics. This coupling is very weak or absent in the low-resolution model.  相似文献   

19.
The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model. Reducing the grid spacing from about 350 km to about 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution. It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution seen across climate models.  相似文献   

20.
冯蕾  周天军 《大气科学》2015,39(2):386-398
本文使用MRI模式在不同分辨率下(180 km、120 km、60 km、20 km)的AMIP试验结果, 分析了该模式对青藏高原夏季降水及水汽输送通量的模拟, 并考察模式分辨率的影响。结果表明:MRI模式能够较为合理地模拟出青藏高原夏季气候平均的降水空间分布, 但对气候平均水汽输送通量以及降水年际变化的模拟却存在较大的误差。随着分辨率的提高, 该模式对青藏高原气候平均降水的模拟有明显改进, 包括降水年循环以及夏季降水的空间分布等。分辨率为180 km、120 km、60 km、20 km的MRI模式模拟的青藏高原7月平均降水绝对误差分别为2.2 mm/d、1.2 mm/d、0.7 mm/d、0.2 mm/d。另外, 高分辨率模式模拟的青藏高原夏季水汽输送通量的年际变化也更接近观测。当分辨率达到20 km时, MRI模式模拟的西风水汽输送指数与观测的相关系数达到0.43, 通过了0.1显著性水平的显著性检验。但MRI模式对青藏高原夏季降水的年际变化以及气候平均水汽输送通量的模拟技巧并不随分辨率的增加有明显提高。低分辨率模式中模拟降水量偏大、印度季风槽偏强的现象在高分辨率模式中仍然存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号