首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In this paper, we have tried to understand the ENSO, MJO and Indian summer monsoon rainfall relationships from observation as well as from coupled model results. It was the general feeling that El-Niño years are the deficient in Indian monsoon rainfall and converse being the case for the La-Niña years. Recent papers by several authors noted the failure of this relationship. We find that the model output does confirm a breakdown of this relationship. In this study we have seen that a statistically defined modified Indian summer monsoon rainfall (MISMR) index, a linearly regressed ISMR index and dynamical Webster index (WBSI), shows an inverse relationship with ENSO index during the entire period of integration (1987 to 1999). It is also seen from this study that the amplification of the MJO signals were large and the ENSO signals were less pronounced during the years of above normal ISMR. The MJO signal amplitudes were small and ENSO signals were strong during the years of deficient ISMR. It has been noted that here is a time lag between the MJO and ENSO signal in terms of their modulation aspect. If time lag is added with the ENSO signal then both signals maintain the amplitude modulation theory. A hypothesis is being proposed here to define a relationship between MJO and ENSO signals for the entire period between 1987 and 1999.Received September 18, 2002; revised November 22, 2002; accepted December 20, 2002 Published online: May 8, 2003  相似文献   

2.
为了研究大尺度背景场对ENSO和印度夏季风降水关系的调制作用,更好地预报气候变暖背景下印度夏季风降水的年际变化,本文利用重建的10套ENSO指数和印度降水资料,研究了ENSO和印度夏季风降水在过去500 a(1470—1999年)中的关系,其存在的原因以及如何理解这一现象,主要侧重于ENSO对印度夏季风的影响。结果表明:1)在过去500 a中,ENSO与印度夏季风降水的关系并非是一成不变的,大体上呈现负相关关系;在小冰期负相关较弱,在现代暖期负相关加强,19世纪80年代后负相关开始减弱。2)在过去500 a中,印度夏季风降水异常与ENSO的关系是确定存在的,并非是随机产生的。3)在小冰期和现代暖期,印度夏季降水异常与Ni1o指数的振幅及周期的关系有很大的不同,现代暖期明显较大,即相对于小冰期,现代暖期ENSO的振幅增强、周期偏大,导致印度夏季风与ENSO呈现较强的负相关关系;但两者的平均状态相差不大。  相似文献   

3.
R. Krishnan  M. Sugi 《Climate Dynamics》2003,21(3-4):233-242
Recent studies have furnished evidence for interdecadal variability in the tropical Pacific Ocean. The importance of this phenomenon in causing persistent anomalies over different regions of the globe has drawn considerable attention in view of its relevance in climate assessment. Here, we examine multi-source climate records in order to identify possible signatures of this longer time scale variability on the Indian summer monsoon. The findings indicate a coherent inverse relationship between the inter-decadal fluctuations of Pacific Ocean sea surface temperature (SST) and the Indian monsoon rainfall during the last century. A warm (cold) phase of the Pacific interdecadal variability is characterized by a decrease (increase) in the monsoon rainfall and a corresponding increase (decrease) in the surface air temperature over the Indian subcontinent. This interdecadal relationship can also be confirmed from the teleconnection patterns evident from long-period sea level pressure (SLP) dataset. The SLP anomalies over South and Southeast Asia and the equatorial west Pacific are dynamically consistent in showing an out-of-phase pattern with the SLP anomalies over the tropical central-eastern Pacific. The remote influence of the Pacific interdecadal variability on the monsoon is shown to be associated with prominent signals in the tropical and southern Indian Ocean indicative of coherent inter-basin variability on decadal time scales. If indeed, the atmosphere–ocean coupling associated with the Pacific interdecadal variability is independent from that of the interannual El Niño-Southern Oscillation (ENSO), then the climate response should depend on the evolutionary characteristics of both the time scales. It is seen from our analysis that the Indian monsoon is more vulnerable to drought situations, when El Niño events occur during warm phases of the Pacific interdecadal variability. Conversely, wet monsoons are more likely to prevail, when La Niña events coincide during cold phases of the Pacific interdecadal variability.  相似文献   

4.
This study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Niño Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El-Niño years induce a decrease of rainfall over the Indian subcontinent. However, the observed correlation between ENSO and the Indian Ocean zonal mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.  相似文献   

5.
B. G. Hunt 《Climate Dynamics》2014,42(9-10):2271-2285
Output from a multi-millennial control simulation of the CSIRO Mark 2 coupled model has been used to investigate quantitatively the relation between the Indian summer monsoon rain and El Nino/Southern Oscillation events. A moving window correlation between these two features revealed marked interannual and multi-decadal variability with the correlation coefficient varying between ?0.8 and +0.2. This suggests that current observations showing a decline in this correlation are due to natural climatic variability. A scatter diagram of the anomalies of the Indian summer monsoon rainfall and NINO 3.4 surface temperature showed that in almost 40 % of the cases ENSO events were associated with rainfall anomalies opposite to those implied by the climatological correlation coefficient. Case studies and composites of global distributions of surface temperature and rainfall anomalies for El Nino (or La Nina) events highlight the opposite rainfall anomalies over India that can result from very similar ENSO surface temperature anomalies. Composite differences are used to demonstrate the unique sensitivity of Indian summer monsoon rainfall anomalies to ENSO events. The problem of predicting such anomalies is discussed in relation to the fact that time series of the monsoon rainfall, both observed and simulated, consist of white noise. Based on the scatter diagram it is concluded that in about 60 % of the cases seasonal or annual prediction of monsoon rainfall based on individual ENSO events will result in the correct outcome. Unfortunately, there is no way, a priori, of determining for a given ENSO event whether the correct or a rogue prediction will result. Analysis of the present model’s results suggest that this is an almost world-wide problem for seasonal predictions of rainfall.  相似文献   

6.
Summary This study addresses the relationship between the Indian summer monsoon (ISM) and the coupled atmosphere/ocean system in the tropical Pacific on the interannual time scales. High positive correlations are found between ISM rainfall and both mixed layer sea water temperature (SWT) and sea surface temperature (SST) anomalies of the tropical western Pacific in the following winter. Negative correlations between ISM rainfall and SST in the central/eastern Pacific also appear to be most significant in the following winter. These parameters are correlated with each other mainly on a biennial time scale. Lag-correlations between the zonal wind and SST along the the equatorial Pacific show that the westerly (easterly) surface wind stress anomalies over the central/western Pacific are greatly responsible for the formation of negative (positive) SST/SWT anomalies in the western Pacific and positive (negative) SST/SWT anomalies in the central/eastern Pacific. Furthermore, it is evidenced that these lagcorrelations are physically based on the anomalies in the large-scale convection over the Asian monsoon region and the associated east-west circulation over the tropical Pacific, which first appear during the Indian summer monsoon season and evolve during the following autumn and winter. These results strongly suggest that the Asian summer monsoon may have an active, rather than a passive, role on the interannual variability, including the ENSO events, of the coupled atmosphere/ocean system over the tropical Pacific.With 9 Figures  相似文献   

7.
Summary Observational data are used to explore the relationship between surface air temperature anomaly gradients and Indian summer monsoon rainfall (ISMR). The meridional temperature anomaly gradient across Eurasia during January directed towards equator (pole) is a very good precursor of subsequent excess (deficient) Indian summer monsoon rainfall (ISMR). This gradient directed towards equator (pole) indicates below (above) normal blocking activity over Eurasia, which leads to less (more) than normal southward penetration of dry and cold mid latitude westerlies over the Indian monsoon region, which ultimately strengthens (weakens) the normal monsoon circulation. These findings suggest a mechanism for the weakening of relationship between El Niño and ISMR.Though there is a strong fundamental association between El Niño (warm ENSO) and deficient Indian summer monsoon rainfall (ISMR), this relationship was weak during the period 1921–1940 and the recent decade (1991–1998). During the El Niño years of 1921–1940 and 1901–1998, the meridional temperature anomaly gradient across Eurasia (Eurasian forcing) during January was directed towards equator. On the other hand, during the El Niño years of 1901–1920 and 1941–1990 this gradient was directed towards pole. Thus during 1921–1940 and 1991–1998, the adverse impact of El Niño on Indian monsoon was reduced by the favorable Eurasian forcing resulting in the weak association between El Niño and ISMR. This finding disagrees with the hypothesis of winter warming over the Eurasian continent as the reason for the observed weakening of this relationship during recent decade.  相似文献   

8.
This study has investigated the possible relation between the Indian summer monsoon and the Pacific Decadal Oscillation (PDO) observed in the sea surface temperature (SST) of the North Pacific Ocean. Using long records of observations and coupled model (NCAR CCSM4) simulation, this study has found that the warm (cold) phase of the PDO is associated with deficit (excess) rainfall over India. The PDO extends its influence to the tropical Pacific and modifies the relation between the monsoon rainfall and El Niño-Southern Oscillation (ENSO). During the warm PDO period, the impact of El Niño (La Niña) on the monsoon rainfall is enhanced (reduced). A hypothesis put forward for the mechanism by which PDO affects the monsoon starts with the seasonal footprinting of SST from the North Pacific to the subtropical Pacific. This condition affects the trade winds, and either strengthens or weakens the Walker circulation over the Pacific and Indian Oceans depending on the phase of the PDO. The associated Hadley circulation in the monsoon region determines the impact of PDO on the monsoon rainfall. We suggest that knowing the phase of PDO may lead to better long-term prediction of the seasonal monsoon rainfall and the impact of ENSO on monsoon.  相似文献   

9.
The long-term variability of the Indian summer monsoon rain-fall and related regional and global param-eters are studied. The cubic spline is used as a digital filter to smooth the high frequency signals in the time series of the various parameters. The length of the data series varies from 95 to 115 years during the period 1871-1985. The parameters studied within the monsoon system are: (a) monsoon rainfall of the country as a whole; (b) number of break-monsoon days during July and August; (c) number of storms/ depressions in Bay of Bengal and Arabian Sea during summer monsoon season; and (d) dates of onset of summer monsoon over South Kerala Coast. The parameters studied outside the monsoon system are: (a) the Wright’s Southern Oscillation Index (June-July-August); (b) the January mean Northern Hemi-spheric surface air temperature anomaly; and (c) the East-equatorial Pacific sea surface temperature anomaly.In order to examine the variability under various degrees of the smoothing, the series are filtered with splines of 50% variance reduction frequency of one cycle per 10, 20 and 30 years. It is observed that the smoothed time series of the parameters within the monsoon system comprise a common slowly varying com-ponent in an episodic manner distinctly showing the excess and deficient rainfall epochs. The change of intercorrelations between the time series with increasing degree of smoothing throws some light on the time scales of the dominant interactions. The relation between Southern Oscillation and East equatorial Pacific sea surface temperature and the Indian summer monsoon seems to be dominant on the interannual scale. The low frequency variations are found to have significantly contributed to the instability of the correlations of monsoon rainfall with parameters outside the monsoon system.  相似文献   

10.
Using rainfall data from the Global Precipitation Climatology Project(GPCP),NOAA extended reconstruction sea surface temperature(ERSST),and NCEP/NCAR reanalysis,this study investigates the interannual variation of summer rainfall southwest of the Indian Peninsula and the northeastern Bay of Bengal associated with ENSO.The composite study indicates a decreased summer rainfall southwest of the Indian Peninsula and an increase in the northeastern Bay of Bengal during the developing phase,but vice versa during the decay phase of El Ni o.Further regression analysis demonstrates that abnormal rainfall in the above two regions is controlled by different mechanisms.Southwest of the Indian Peninsula,the precipitation anomaly is related to local convection and water vapor flux in the decay phase of El Ni o.The anomalous cyclone circulation at the lower troposphere helps strengthen rainfall.In the northeastern Bay of Bengal,the anomalous rainfall depends on the strength of the Indian southwest summer monsoon(ISSM).A strong/weak ISSM in the developing/decay phase of El Ni o can bring more/less water vapor to strengthen/weaken the local summer precipitation.  相似文献   

11.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

12.
The present study aims to (a) examine meteorological basis for construction of regional monsoon indices and (b) explore the commonality and differences among tropical regional monsoons, especially the teleconnection and monsoon–ENSO relationship. We show that the area-averaged summer precipitation intensity is generally a meaningful precipitation index for tropical monsoons because it represents very well both the amplitude of annual cycle and the leading mode of year-to-year rainfall variability with a nearly uniform spatial pattern. The regional monsoon circulation indices can be defined in a unified way (measuring monsoon trough vorticity) for seven tropical monsoon regions, viz.: Indian, Australian, western North Pacific, North and South American, and Northern and Southern African monsoons. The structures of the tropical monsoons are commonly characterized by a pair of upper-level double anticyclones residing in the subtropics of both hemispheres; notably the winter hemispheric anticyclone has a barotropic structure and is a passive response. Two types of upper-level teleconnection patterns are identified. One is a zonal wave train emanating from the double anticyclones downstream along the westerly jets in both hemispheres, including Indian, Northern African and Australian monsoons; the other is a meridional wave train emanating from the double anticyclones polewards, such as the South American and western North Pacific monsoons. Over the past 55 years all regional summer monsoons have non-stationary relationship with ENSO except the Australian monsoon. The regional monsoon–ENSO relationship is found to have common changing points in 1970s. The relationships were enhanced for the western North Pacific, Northern African, North American and South American summer monsoons, but weakened for the Indian summer monsoon (with a recovery in late 1990s). Regardless the large regional differences, the monsoon precipitations over land areas of all tropical monsoon regions are significantly correlated with the ENSO, suggesting that ENSO drives global tropical monsoon rainfall variability. These results provide useful guidance for monitoring sub-seasonal to seasonal variations of the regional monsoons currently done at NCEP and for assessment of the climate models’ performances in representing regional and global monsoon variability.  相似文献   

13.
The Indian summer monsoon of 1982 and 1997 depicts disparities, however, maximum sea surface temperature anomaly over Niño 3 region is observed in the following winter of both the years. The inter-annual variation of sea surface temperature anomaly shows maximum peak during 1982/83 and 1997/98 El Niño events. The inter-annual variation of multivariate ENSO index also supports the above observation. The analyses of the entire tropical Pacific basin including the equatorial region reveal an anomalous behavior of the mean sea level pressure (MSLP) and the convective activities. The observations further reveal that the negative anomaly in monsoon rainfall over India prevails throughout the monsoon season except for the month of August in 1982, while in the year 1997 the monsoon rainfall anomaly shows random variations. The comparison between the summer monsoon rainfall of 1982 and 1997 depicts that the magnitude of the positive anomaly is same in the month of August. The condition over tropical Pacific during 1982/83 and 1997/98 has been investigated through the variation of outgoing long wave radiation (OLR), MSLP and pressure vertical velocity. The time–longitude plots of OLR and MSLP reveal the changes in pressure distribution and convective pattern over the tropical equatorial Pacific. The zonal and meridional cross section of pressure vertical velocity over the tropical Pacific and tropical Indian Ocean facilitates to understand the strength of the vertical motion during the monsoons of 1982 and 1997.  相似文献   

14.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

15.
This study explores potential impacts of the East Asian winter monsoon (EAWM) on summer climate variability and predictability in the Australia–Asian region through Australia–Asia (A-A) monsoon interactions. Observational analysis is conducted for the period of 1959 to 2001 using ERA-40 wind reanalysis and Climate Research Unit rainfall and surface temperature monthly datasets. Statistically significant correlations are established between the Australian summer monsoon and its rainfall variations with cross-equatorial flows penetrating from South China Sea region and northerly flow in the EAWM. The underlying mechanism for such connections is the response of the position and intensity of Hardley circulation to strong/weak EAWM. A strong EAWM is associated with an enhanced cross-equatorial flow crossing the maritime continent and a strengthened Australia summer monsoon westerlies which affect rainfall and temperature variations in northern and eastern part of the Australian continent. Furthermore, partial correlation analysis, which largely excludes El Niño-Southern Oscillation (ENSO) effects, suggests that these connections are the inherent features in the monsoon system. This is further supported by analyzing a global model experiment using persistent sea surface temperatures (SSTs) which, without any SST interannual variations, shows similar patterns as in the observational analysis. Furthermore, such interaction could potentially affect climate predictability in the region, as shown by some statistically significant lag correlations at monthly time scale. Such results are attributed to the impacts of EAWM on regional SST variations and its linkage to surface conditions in the Eurasian continent. Finally, such impacts under global warmed climate are discussed by analyzing ten IPCC AR4 models and results suggest they still exist in the warmed climate even though the EAWM tends to be weaker.  相似文献   

16.
Based on observational and reanalysis data,the relationships between the eastern Pacific(EP)and central Pacific(CP)types of El Ni?o?Southern Oscillation(ENSO)during the developing summer and the South Asian summer monsoon(SASM)are examined.The roles of these two types of ENSO on the SASM experienced notable multidecadal modulation in the late 1970s.While the inverse relationship between the EP type of ENSO and the SASM has weakened dramatically,the CP type of ENSO plays a far more prominent role in producing anomalous Indian monsoon rainfall after the late 1970s.The drought-producing El Ni?o warming of both the EP and CP types can excite anomalous rising motion of the Walker circulation concentrated in the equatorial central Pacific around 160°W to the date line.Accordingly,compensatory subsidence anomalies are evident from the Maritime Continent to the Indian subcontinent,leading to suppressed convection and decreased precipitation over these regions.Moreover,anomalously less moisture flux into South Asia associated with developing EP El Ni?o and significant northwesterly anomalies dominating over southern India accompanied by developing CP El Ni?o,may also have been responsible for the Indian monsoon droughts during the pre-1979 and post-1979 sub-periods,respectively.El Ni?o events with the same“flavor”may not necessarily produce consistent Indian monsoon rainfall anomalies,while similar Indian monsoon droughts may be induced by different types of El Ni?o,implying high sensitivity of monsoonal precipitation to the detailed configuration of ENSO forcing imposed on the tropical Pacific.  相似文献   

17.
B. G. Hunt 《Climate Dynamics》2012,39(7-8):1801-1821
A multi-millennial run of the CSIRO Mark2 coupled climatic model has been used to investigate megadroughts and megafloods during the Indian summer monsoon (June–September). These extreme events were defined as having rainfall anomalies at least two standard deviations from normal. More than ten megafloods and more than twenty megadroughts, so-defined, were found to occur in a 5,000-year period of the simulation. The simulation replicated most of the major features of the observed summer monsoon, but a comparison of observed and simulated probability density functions suggests that the limited observed rainfall time series to date does not adequately sample the possible range of Indian monsoonal rainfall. An investigation of causal mechanisms of Indian rainfall variability reproduced the observed negative correlation with ENSO events, but it was found that neither extreme ENSO events or extremes of a range of other climatic phenomena coincided with the simulated, extreme megadroughts and megafloods. This disconnect between these events is succinctly illustrated with examples related to ENSO events in particular. Autoregressive and FFT analysis of observed and simulated Indian summer monsoon rainfall time series revealed them to consist of white noise. Since these time series therefore consist of random outcomes, it is apparent that these Indian megadroughts and megafloods are the consequence of stochastic influences. Thus, it is concluded that the interannual variability of Indian summer monsoonal rainfall cannot be predicted in general, nor can megadroughts and megafloods in particular.  相似文献   

18.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

19.
A large spread exists in both Indian and Australian average monsoon rainfall and in their interannual variations diagnosed from various observational and reanalysis products. While the multi model mean monsoon rainfall from 59 models taking part in the Coupled Model Intercomparison Project (CMIP3 and CMIP5) fall within the observational uncertainty, considerable model spread exists. Rainfall seasonality is consistent across observations and reanalyses, but most CMIP models produce either a too peaked or a too flat seasonal cycle, with CMIP5 models generally performing better than CMIP3. Considering all North-Australia rainfall, most models reproduce the observed Australian monsoon-El Niño Southern Oscillation (ENSO) teleconnection, with the strength of the relationship dependent on the strength of the simulated ENSO. However, over the Maritime Continent, the simulated monsoon-ENSO connection is generally weaker than observed, depending on the ability of each model to realistically reproduce the ENSO signature in the Warm Pool region. A large part of this bias comes from the contribution of Papua, where moisture convergence seems to be particularly affected by this SST bias. The Indian summer monsoon-ENSO relationship is affected by overly persistent ENSO events in many CMIP models. Despite significant wind anomalies in the Indian Ocean related to Indian Ocean Dipole (IOD) events, the monsoon-IOD relationship remains relatively weak both in the observations and in the CMIP models. Based on model fidelity in reproducing realistic monsoon characteristics and ENSO teleconnections, we objectively select 12 “best” models to analyze projections in the rcp8.5 scenario. Eleven of these models are from the CMIP5 ensemble. In India and Australia, most of these models produce 5–20 % more monsoon rainfall over the second half of the twentieth century than during the late nineteenth century. By contrast, there is no clear model consensus over the Maritime Continent.  相似文献   

20.
Interannual variability of the Indian summer monsoon rainfall has two dominant periodicities, one on the quasi-biennial (2–3 year) time scale corresponding to tropospheric biennial oscillation (TBO) and the other on low frequency (3–7 year) corresponding to El Niño Southern Oscillation (ENSO). In the present study, the spatial and temporal patterns of various atmospheric and oceanic parameters associated with the Indian summer monsoon on the above two periodicities were investigated using NCEP/NCAR reanalysis data sets for the period 1950–2005. Influences of Indian and Pacific Ocean SSTs on the monsoon season rainfall are different for both of the time scales. Seasonal evolution and movement of SST and Walker circulation are also different. SST and velocity potential anomalies are southeast propagating on the TBO scale, while they are stationary on the ENSO scale. Latent heat flux and relative humidity anomalies over the Indian Ocean and local Hadley circulation between the Indian monsoon region and adjacent oceans have interannual variability only on the TBO time scale. Local processes over the Indian Ocean determine the Indian Ocean SST in biennial periodicity, while the effect of equatorial east Pacific SST is significant in the ENSO periodicity. TBO scale variability is dependent on the local factors of the Indian Ocean and the Indian summer monsoon, while the ENSO scale processes are remotely controlled by the Pacific Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号