首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shortly after the dynamic flare of 14 44 UT on 6 November, 1980, which initiated the second revival in the sequence of post-flare coronal arches of 6–7 November, a moving thermal disturbance was observed in the fine field of view of HXIS. From 15 40 UT until about 18 UT, when it left the field of view, the disturbance rose into the corona, as indicated by a projected velocity of 7.4 km s-1 in the south-east direction. The feature was located above the reconnection region of the dynamic flare and was apparently related to the revived coronal arch. Observations in the coarse field of view after 18 UT revealed a temperature maximum in the revived arch, rising with a velocity of 7.0 km s-1 directly in continuation of the thermal disturbance. The rise velocity of the disturbance was initially (at least until 17 20 UT) very similar to the rise velocities observed for the post-flare loop tops of the parent flare. This suggests that the rise of the reconnection point, in the Kopp and Pneuman (1976) mechanism responsible for the rise of the loop tops, also dictates the rise of the disturbance. From energy requirements it follows that in this phase the disturbed region is still a separate magnetic island, thermally isolated from the old arch structure and the post-flare loops. After 18 UT the rise of the post-flare loop tops slowed down to 2 km s-1, which is significantly slower than the rise of the brightness and temperature maxima of the revived arch in the coarse field of view. Thus in this phase the Kopp and Pneuman mechanism is no longer directly responsible for the rise of the thermal structure and the rise possibly reflects the merging of the old and the new arch structures.A similar thermal disturbance was observed after the dynamic flare of 07: 53 UT on 4 June, 1980. On the other hand, the confined flare of 17 25 UT on 6 November, 1980, did not show this phenomenon. Apparently this type of disturbance occurs after dynamic flares only, in particular when the flare is associated with an arch revival.  相似文献   

2.
For almost 30 hr after the major (gamma-ray) two-ribbon flare on 6 November 1980, 03:30 UT, the Hard X-Ray Imaging Spectrometer (HXIS) aboard the SMM satellite imaged in > 3.5 keV X-rays a gigantic arch extending above the active region over the limb. Like a similar configuration on 22 May 1980, this arch formed the lowest part of a stationary post-flare radio noise storm recorded at metric wavelengths at Nançay and Culgoora. 6.5 hr after the flare a coronal region below the arch started quasi-periodic pulsations in X-ray brightness, observed by several SMM instruments. These brightness variations had no response in the chromosphere (H), very little in the transition layer (O v), but they clearly correlated with similar variations in brightness at 169 MHz. There were 13 pulses of this kind, with apparent periodicity of about 20 min, until another flare occurred in the active region at 15:00 UT. All the brightenings appeared within a localized area of about 30000 km2 in the northern part of the active region, but they definitely did not occur all at the same place.The top of the X-ray arch, at an altitude of 155 000 km, was continuously and smoothly decaying, taking no part in the striking variations below it. Therefore, the area variable in brightness does not seem to be the footpoint of the arch, as we supposed for similar variations on 22 May. More likely, it is a separate region connected directly with the source of the radio storm; particles accelerated in the storm may be dumped into the low corona and cause the X-ray enhancements. The X-ray arch was enhanced by two orders of magnitude in 3.5–5.5 keV X-ray counts and the temperature increased from 7.3 × 106 to 9 × 106 K when the new two-ribbon flare occurred at 15:00 UT. Thus, it is possible that energy is brought into the arch via the upper parts of the reconnecting flare loops - a process that can continue for hours.  相似文献   

3.
Using HXIS data, we have studied the further development of the coronal arch extending towards the SE above active region No. 17255 in November 1980. The arch, studied originally by vestka (1984) disappeared on 10 November (after pronounced revival), but since 9 November HXIS revealed another arch-like structure towards the SW. We have studied the development of this new structure which appeared to be most likely an arch interconnecting AR 17255 with AR 17251, located nearly 30° to the west. This interconnection revived many times during the following days with intensity varying with the activity in both active regions. We have estimated the physical characteristics in this coronal structure and compared them with observations of interconnecting loops made at lower energies by Skylab in 1973. The temperature (maximum values 7.5–14 × 106 K) and the density (1.1–5.0 × 109 cm–3) are found to be higher than in the Skylab loops (a result that could be expected because the HXIS energy range was harder than that of Skylab) and similar to the values deduced for the earlier arch system extending to the SE. However, much shorter decay times of the brightness variations indicate the presence of conduction in contrast to the SE arch in which conduction was clearly inhibited. This supports the assumption that the SE and SW coronal structures were two different phenomena.Presently at Delft Institute of Technology, Landbergstraat 3, 2628 CE Delft, The Netherlands.  相似文献   

4.
On May 21/22, 1980 the Hard X-Ray Imaging Spectrometer aboard the SMM imaged an extensive coronal structure after the occurrence of a two-ribbon flare on May 21, 20:50 UT. The structure was observed from 22:20 UT on May 21 until its disappearence at 09:00 UT on May 22.At 22:20 UT the brightest pixel in the arch was located at a projected altitude of 95 000 km above the zero line of the longitudinal magnetic field. At 23:02 UT the maximum of brightness shifted to a neighbouring pixel with approximately the same projected altitude. This sudden shift indicates that the X-ray structure consisted of (at least) two separate arches at approximately the same altitude, one of which succeeded the other as the brightest arch in the structure at 23:02 UT.From 23:02 UT onwards the maximum of brightness did not change its position in the HXIS coarse field of view. With a spatial resolution of 32 this places an upper limit of 1.1 km s-1 on the rise velocity of the arch. Thus, contrary to a similar arch observed on November 6/7, where rise velocities of the order of 10 km s-1 were measured in the same phase of development, the May 22 arch was a stationary structure at an altitude of 145000 km.The following values were estimated for the physically relevant quantities of the May 21/22 arch at the time of its maximum brightness (23:00 UT): temperature T 6.3 × 106 K, electron density n e 1.1 × 109 cm-3, total emitting volume V 5 × 1029 cm3, energy density 2.9 erg cm–3, total energy contents E 1.4 × 1030 erg, total mass M 9 × 1014 g.The top of the arch was observed at 145 000 km altitude within 1.5 hr after the flare occurrence. Since it seems unlikely that the structure already existed prior to the flare at 20:50 UT, the arch must have risen to its stationary position with an average velocity exceeding 17 km s–1 (possibly much faster). We speculate that the arch was formed very fast at the flare onset, when (part of) the active region loop system was elevated within minutes to the observed altitude.  相似文献   

5.
Observations of the 15:22 UT flare of 24 June 1980 were made using the Very Large Array (VLA) at 6 cm wavelength simultaneously with the Hard X-ray Imaging Spectrometer (HXIS) aboard the Solar Maximum Mission. It was found that at the peak of the impulsive phase, the brightest microwave point appeared to lie between the soft (3.6–8.0 keV) and hard (22–30 keV) X-ray maxima, which were themselves separated by 20 (Kundu et al., 1984). Since the publication of these results, we have analyzed the imaging data from the Ultraviolet Spectrometer Polarimeter (UVSP) with the goal of narrowing the possible interpretations of the event. Like the VLA and HXIS, the UVSP observations provide information about the location of the primary electrons; the observations taken together suggest that the fast electrons were symmetrically distributed within the flare loop.  相似文献   

6.
A review is given of observations and theories relevant to the solar flare of 21 May, 1980, 20 ∶ 50 UT, the best studied flare on record. For more than 30 hr before the flare there was filament activation and plasma heating to above 10 MK. A flare precursor was present ≥6 min before the flare onset. The flare started with filament activation (20 ∶ 50 UT), followed by thick-target heating of two footpoints and subsequent ablation and convective evaporation involving energies of 1 to 2 × 1031 erg. Coronal explosions occurred at 20 ∶ 57 UT (possibly associated with a type-II burst) and at 21 ∶ 04 UT (associated with an Hα spray?). Post-flare loops were first seen at 20 ∶ 57 UT, and their upward motion is interpreted as a manifestation of successive field-line reconnections. A type-IV radio burst which later changed into a type-I noise storm was related to a giant coronal arch located just below the radio noise storm region. Some implications and difficulties these observations present to current flare theories are mentioned.  相似文献   

7.
We analyze X-ray images and spectra of a coronal structure which extended to altitudes over 130 000 km above an eruptive flare located 20° behind the western solar limb. The images were obtained by the Flat Crystal Spectrometer (FCS) and the spectra were obtained by the Bent Crystal Spectrometer (BCS) aboard the SMM spacecraft. Images in Oviii and Mgxi lines cover the period from before the flare onset (which occurred at 22:31 UT on 16 February, 1986) through 17 UT on 17 February and were used for determination of temperature and emission measure within the structure. BCS obtained Caxix spectra of the coronal event, benefiting from the occultation of the active region behind the solar limb.The BCS data show, and FCS data confirm, that the temperature, after an initial rise and decline, stayed almost constant for many hours after 04:30 UT on 17 February. This may indicate that initially we observed the rise and decay of post-flare loops, but later the X-ray emission came predominantly from a post-flare giant arch that formed above them. This has been observed in many previous cases. However, a comparison with other events characterized by very high post-flare loops, such as those that occurred on 29 July, 1973 (Skylab data) and on 14 February, 1986 (from this same region), suggests that we may be observing the same system of slowly growing groups all the time. Therefore, we suggest a third possibility, i.e., that such anomalously high loop systems first behave like post-flare loops but gradually take over some characteristics of a post-flare giant arch. The Soft X-ray Telescope aboardYohkoh, with spatial resolution improved by nearly an order of magnitude, might be able to check up on the development of such large-scale coronal structures if proper observational modes are applied after the occurrence of major eruptive flares.Deceased 1 June, 1993.  相似文献   

8.
The dynamic flare of 6 November, 1980 (max 15:26 UT) developed a rich system of growing loops which could be followed in H for 1.5 hr. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of deviations from LTE populations for a hydrogen atom reveal that this requires electron densities in the loops close to, or in excess of 1012 cm -3. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 1012 cm -3 if no non-thermal motions were present, or 5 × 1011 cm -3 for a turbulent velocity of ~ 12 km s -1.It is now general knowledge that flare loops are initially observed in X-rays and become visible in H only after cooling. For such a high density, a loop would cool through radiation from 107 to 104 K within a few minutes so that the dense H loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H. Therefore, we suggest that the density must have been significantly lower when the loops were formed and that the flare loops were apparently both shrinking and increasing in density while cooling.NAS/NRC Research Associate, on leave from CNIE, Argentina.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation. Partial support for the National Solar Observatory is provided by the USAF under a Memorandum of Understanding with the NSF.  相似文献   

9.
G. Poletto  R. A. Kopp 《Solar physics》1988,116(1):163-178
On 21–22 May, 1980 the HXIS instrument aboard SMM imaged an enormous, more-or-less stationary, X-ray arch structure near the position of a large two-ribbon flare which immediately preceded it in time. As described by vestka et al. (1982), the arch remained visible for up to 10 hours. Previous inferences of the height, orientation, and physical parameters of this feature have been based largely on the X-ray data and on radio observations of the associated stationary Type I noise storm. In the present paper we use the observed photospheric line-of-sight magnetic field distribution to compute, in the current-free approximation, the three-dimensional topology of the coronal field above the flare site. Comparing the HXIS intensity contours of the arch to the projected shapes of the field lines suggests that the arch is indeed aligned with certain coronal flux tubes and allows an independent determination of the geometrical arch parameters to be made. This procedure indicates that the true height of the arch is about 70000 km, i.e., appreciably less than was suggested previously (although it is still certainly to be classified as a giant feature of the post-flare evolution).These results suggest that the arch may be a by-product of magnetic reconnection occurring far above the flare site, analogous to the post-flare loops seen at lower heights. Unlike the latter, however, the field lines undergoing reconnection here link more distant parts of the active region; i.e., they do not represent direct linkages across the magnetic neutral line and thus appear to be topologically quite distinct from those which thread the underlying post-flare loops. In fact, of this group of peripheral field lines, the arch could simply comprise the lowest-lying ones to have been opened up by the flare process (and the first to reconnect again). This would explain why both the arch and the post-flare loops were visible early in the decay phase, being products of separate reconnection processes. Moreover, because of the lower plasma density and longer cooling times of the arch, this feature persisted long after the post-flare loops faded from view. A calculation of the magnetic energy liberated by reconnection shows that this process is easily capable of satisfying the overall energy requirements of the arch (the latter as determined from observations).On leave from Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.  相似文献   

10.
The H analysis of the development of the strong impulsive and faint gradual phase of the June 26, 1983 flare indicates the following: (1) The flare originated from two microprominences on the southeast border of NOAA 4227. Several similar events are summarized in Table II. (2) The main flare structure was a flare cone, which consisted of a bright surge-like stream, elevated above two flare ribbons (located in the cone's base). The flare cone had a height of about 40 × 103 km and lasted 4 min in H. The upper part of the cone was terminated by a very fine loop, which was bent to the west, where later a chromospheric brightening occurred at the footpoint of a flaring arch. A 300 keV burst and radio spikes were observed during the maximum flare phase. (3) The flaring arch system, with its apex at a height of about 48 × 103 km, formed the skeleton for the coronal helmet structure (Figure 7(c)). The velocity of the plasma moving along the flaring arch was between 3500 km s–1} and 6900 km s–1} during the first brightening (14:07 UT).  相似文献   

11.
Flaring arches     
Flaring arches is a name assigned to a particular component of some flares. This component consists of X-ray and H emission which traverses a coronal arch from one to the other of its chromospheric footpoints. The primary footpoint is at the site of a flare. The secondary footpoint, tens of thousands of kilometers distant from the source flare, but in the same active region, brightens in H concurrent with the beginning of the hard X-ray burst at the primary site. From the inferred travel time of the initial exciting agent we deduce that high speed electron streams travelling through the arch must be the source of the initial excitation at the secondary footpoint. Subsequently, a more slowly moving agent gradually enhances the arch first in X-rays and subsequently in H, starting at the primary footpoint and propagating along the arch trajectory. The plasma flow in H shows clearly that material is injected into the arch from the site of the primary footpoint and later on, at least in some events, a part of it is also falling back.Thus a typical flaring arch has three, and perhaps four consecutive phases: (1) An early phase characterized by the onset of hard X-ray burst and brightening of the secondary footpoint in H. (2) The main X-ray phase, during which X-ray emission propagates through the arch. (3) The main H phase, during which H emitting material propagates through the arch. And (4) an aftermath phase when some parts of the ejected material seem to flow in the reverse direction towards the primary site of injection.An extensive series of flaring arches was observed from 6 to 13 November, 1980 at the Big Bear Solar Observatory and with the Hard X-Ray Imaging Spectrometer (HXIS) on board the SMM in a magnetically complex active region. The two most intense arches for which complete H and X-ray data are available and which occurred on 6 November at 17 21 UT (length 57000 km) and on 12 November at 16 57 UT (length 263 000 km) are discussed in this paper.  相似文献   

12.
A flare observed with the Hard X-Ray Imaging Spectrometer (HXIS) was studied during its rise to maximum temperature and X-ray emission rate. Two proximate flare loops, of lengths 2.8 × 109 cm and 1.1 × 1010 cm, rose to temperatures of 21.5 × 106 K and 30 × 106 K, respectively, in 30 s. Assuming equal heat flux F into each loop from a thermal source at the point where they met, we derive a simple relationship between temperature T and loop length , which gives a loop temperture ratio of 0.68, in close agreement with the observed ratio of 0.72. The observations imply that heating in each loop was maintained by a thermal flux of 5 × 109 ergs cm-2 s-1. It is suggested that conductive heating adequately describes the rise and maximum phase emissions in the loops and that long flare loops reach higher temperatures than short loops during the impulsive phase because of an equipartition of energy between them at their point of interaction.  相似文献   

13.
The flare of 12 November 1980, 0250 UT, in Active Region 2779 (NOAA classification) was studied by using X-ray images obtained with the Hard X-Ray Imaging Spectrometer aboard NASA's Solar Maximum Mission. In a ten-minute period, between about 0244 and 0254 UT, some five short-lived impulsive bursts occurred. We found that the so-called hard bursts ( 15 keV) are also detectable in low energy images. During that 10 min period - the impulsive phase - the heat input into the flare and the total number of energetic electrons increased practically exponentially, to reach their maximum values at 0254 UT. At the end of that period, when the thermal energy content of the flare was largest, a burst was observed, for the first time, to spread in a broad southern direction from an initially small area with a speed of about 50 km s–1. We have called this phenomenon a coronal explosion.Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

14.
MacKinnon  A. L.  Brown  J. C.  Hayward  J. 《Solar physics》1985,99(1-2):231-262

We describe the instrumental corrections which have to be incorporated for reliable correction and deconvolution of images obtained in the 16–22 keV and 22–30 keV energy bands of the Hard X-Ray Imaging Spectrometer (HXIS) aboard the Solar Maximum Mission (SMM). These corrections include amplifier gain and collimator hole size variations across the field of view, amplifier/filter efficiency, variation in effective collimator hole size and angular response with photon energy, dead-time, and hard X-ray plate transmission. We also emphasise the substantial Poisson noise in these energy bands, and describe the maximum entropy deconvolution/correction routine we have developed to establish the spatial structure which can be reliably inferred from HXIS data.

Next we discuss the results of application of our routine to the three impulsive flare phases reported by Duijveman et al. (1982) as exhibiting hard X-ray ‘footpoints’, namely 1980, April 10, May 21, and November 5. Our main conclusions are:

  1. (1)

    Maximum entropy smoothing and Poisson noise data perturbations do not remove the main footpoint features in 16–30 keV nor change their basic morphology. However the results emphasise the asymmetry in footpoint size in the May 21 flare and confirm its possible presence in April 10. They also reveal the 3rd weak distant footpoint in the May 21 flare at an earlier time than found by Duijveman et al.

When the 16–22 and 22–30 keV bands are analysed separately, however, it is found that the footpoints are much less visible above noise in the harder band - i.e. the footpoint spectra are steep. In the April 10 and November 5 flares they are steeper than either the spectrum of intervening pixels or the spectrum at higher energies measured for the whole flare by the SMM Hard X-Ray Burst Spectrometer (HXRBS).

  1. (2)

    The footpoint contrast with surroundings is less than found by Duijveman et al., despite image deconvolution, because of the maximum entropy smoothing of noise.

  2. (3)

    The 16–30keV HXIS footpoint fluxes in the three flares are respectively 28%, 17%, and 15% of the simultaneous HXRBS flare power-law spectrum extrapolated into this energy range.

  3. (4)

    Where Poisson noise is taken into account we find, by cross-correlating pixel count rates, that footpoint synchronism was either not provable at all, or substantially less close than reported by Duijveman et al.

Next we considered the implications of these results for models of the footpoint emission. Contrary to Duijveman et al. we do not consider the HXIS ‘footpoint’ data as supporting a conventional thick target beam interpretation since:

  1. (A)

    The footpoint photon (and electron) fluxes are much less than expected from HXRBS extrapolation. This result casts doubt on recent models of chromospheric heating by electron beams which usually assume all of the HXRBS emission to come from HXIS footpoints.

  2. (B)

    The footpoint spectra for the April 10 and November 5 flares are much softer than the HXRBS spectrum and than the spectrum of intervening pixels, contrary to thick target predictions.

  3. (C)

    Contrary to Duijveman et al. footpoint synchronism does not demand an unreasonable Alfvén speed and so does not require non-thermal particles.

In spite of these objections we also re-considered the constraints placed on the acceleration site conditions in a beam interpretation by return current stability and footpoint contrast in the summed 16–30 keV range. Using the smoothed maximum entropy contrast and taking explicit account of coronal thermal emission, we find maximum densities somewhat larger than Duijveman et al. estimated, and much higher maximum values of T e /T i .

Regarding thermal interpretations we found:

  1. (a)

    Models involving continuous production of short-lived hot kernels in the arch top with Maxwellian tail electrons escaping to the footpoints could explain the 16–30 keV contrast with a rather higher energetic efficiency than a pure beam model. However, whatever the temperature distribution of hot kernel production, the model predicts footpoints harder than the arch summit, contrary to HXIS data.

  2. (b)

    A model with hot kernels produced in one limb of an arch can explain the asymmetry in footpoint size observed in May 21, and probably April 10, and is energetically even more efficient than (a) but is also inconsistent with the spectral data.

  3. (c)

    Finally we point out that HXIS footpoint data may be consistent with a purely geometric interpretation in an almost uniform arch filled with hot plasma.

  相似文献   

15.
The impulsive phases of three flares that occurred on April 10, May 21, and November 5, 1980 are discussed. Observations were obtained with the Hard X-ray Imaging Spectrometer (HXIS) and other instruments aboard SMM, and have been supplemented with Hα data and magnetograms. The flares show hard X-ray brightenings (16–30 keV) at widely separated locations that spatially coincide with bright Hα patches. The bulk of the soft X-ray emission (3.5–5.5 keV) originates from in between the hard X-ray brightenings. The latter are located at different sides of the neutral line and start to brighten simultaneously to within the time resolution of HXIS. Concluded is that:
  1. The bright hard X-ray patches coincide with the footpoints of loops.
  2. The hard X-ray emission from the footpoints is most likely thick target emission from fast electrons moving downward into the dense chromosphere.
  3. The density of the loops along which the beam electrons propagate to the footpoints is restricted to a narrow range (109 < n < 2 × 1010 cm-3), determined by the instability threshold of the return current and the condition that the mean free path of the fast electrons should be larger than the length of the loop.
  4. For the November 5 flare it seems likely that the acceleration source is located at the merging point of two loops near one of the footpoints.
It is found that the total flare energy is always larger than the total energy residing in the beam electrons. However, it is also estimated that at the time of the peak of the impulsive hard X-ray emission a large fraction (at least 20%) of the dissipated flare power has to go into electron acceleration. The explanation of such a high acceleration efficiency remains a major theoretical problem.  相似文献   

16.
17.
By using a combination of X-ray (HXIS), H (Haleakala), white-light corona (Solwind), and zodiacal light (Helios) images on 21–22 May, 1980 we demonstrate, and try to explain, the co-existence of a coronal mass ejection with a stationary post-flare coronal arch. The mass ejection was seen, both by Solwind and Helios, in prolongation of the path of a powerful spray, whereas the active region filament did not erupt. A tentative comparison is made with other occurrences of stationary, or quasi-stationary post-flare coronal arches.  相似文献   

18.
Thompson  B.J.  Reynolds  B.  Aurass  H.  Gopalswamy  N.  Gurman  J.B.  Hudson  H.S.  Martin  S.F.  St. Cyr  O.C. 《Solar physics》2000,193(1-2):161-180
We report coincident observations of coronal and chromospheric flare wave transients in association with a flare, large-scale coronal dimming, metric radio activity and a coronal mass ejection. The two separate eruptions occurring on 24 September 1997 originate in the same active region and display similar morphological features. The first wave transient was observed in EUV and H data, corresponding to a wave disturbance in both the chromosphere and the solar corona, ranging from 250 to approaching 1000 km s–1 at different times and locations along the wavefront. The sharp wavefront had a similar extent and location in both the EUV and H data. The data did not show clear evidence of a driver, however. Both events display a coronal EUV dimming which is typically used as an indicator of a coronal mass ejection in the inner corona. White-light coronagraph observations indicate that the first event was accompanied by an observable coronal mass ejection while the second event did not have clear evidence of a CME. Both eruptions were accompanied by metric type II radio bursts propagating at speeds in the range of 500–750 km s–1, and neither had accompanying interplanetary type II activity. The timing and location of the flare waves appear to indicate an origin with the flaring region, but several signatures associated with coronal mass ejections indicate that the development of the CME may occur in concert with the development of the flare wave.  相似文献   

19.
E. Hiei  T. Okamoto  K. Tanaka 《Solar physics》1983,86(1-2):185-191
Flare activity was observed near the limb with two coronagraphs at the Norikura Solar Observatory and the Soft X-ray Crystal Spectrometer (SOX) aboard HINOTORI. A prominence activation occurred and then Hα brightenings were seen on the disk near the prominence. The prominence became very bright and its electron density increased to 1012.8 cm?3 in 1/2 hour. Loop prominence systems appeared above the Hα brightenings about half an hour after the onset of the flare, and were observed in the coronal lines CaXV 5694Å, FeXIV 5303Å, and FeX 6374Å. Shifted and asymmetric profiles of the emission line of 5303Å were sometimes observed, and turbulent phenomena occurred even in the thermal phase. The energy release site of the flare at the onset would be lower than 20 000 km above the solar limb.  相似文献   

20.
On July 5, 1980 the Hard X-Ray Imaging Spectrometer on board the Solar Maximum Mission observed a complex flare event starting at 22 : 32 UT from AR 2559 (Hale 16955), then at N 28 W 29, which developed finally into a 2-ribbon flare. In this paper we compare the X-ray images with Hα photographs taken at the Big Bear Solar Observatory and identify the site of the most energetic flare phenomena. During the early phases of the event the hard X-rays (>16 keV) came from a compact source located near one of the two bright Hα kernels; we believe the latter are at the footpoints of a compact magnetic loop. The kernel identified with the X-ray source is immediately adjacent to one of the principal sunspots and in fact appears to ‘rotate’ around the sunspot over 90° in the early phase of the flare. Two intense X-ray bursts occur at the site of the rotating kernel, and following each burst the loop fills with hot, X-ray emitting plasma. If the first burst is interpreted as bremsstrahlung from a beam of electrons impinging on a collisionally dominated medium, the energy in such electrons, >16 keV, is ~ 5 × 1030 erg. The altitude of the looptop is 7–10 × 103 km. The temperature structure of the flare is extremely non-homogeneous, and the highest temperatures are found in the top of the loop. A few minutes after the hard X-ray bursts the configuration of the region changes; some of the flare energy is transferred along a system of larger loops that now become the defining structure for a 2-ribbon flare, which is how the flare develops as seen in Hα. In the late, cooling phase of the flare 15 min after maximum, we find a significant component of the plasma at temperatures between 25 and 30 × 106 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号