首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ordinary chondrite meteorites contain silicates, Fe,Ni‐metal grains, and troilite (FeS). Conjoined metal‐troilite grains would be the first phase to melt during radiogenic heating in the parent body, if temperatures reached over approximately 910–960 °C (the Fe,Ni‐FeS eutectic). On the basis of two‐pyroxene thermometry of 13 ordinary chondrites, we argue that peak temperatures in some type 6 chondrites exceeded the Fe,Ni‐FeS eutectic and thus conjoined metal‐troilite grains would have begun to melt. Melting reactions consume energy, so thermal models were constructed to investigate the effect of melting on the thermal history of the H, L, and LL parent asteroids. We constrained the models by finding the proportions of conjoined metal‐troilite grains in ordinary chondrites using high‐resolution X‐ray computed tomography. The models show that metal‐troilite melting causes thermal buffering and inhibits the onset of silicate melting. Compared with models that ignore the effect of melting, our models predict longer cooling histories for the asteroids and accretion times that are earlier by 61, 124, or 113 kyr for the H, L, and LL asteroids, respectively. Because the Ni/Fe ratio of the metal and the bulk troilite/metal ratio is higher in L and LL chondrites than H chondrites, thermal buffering has the greatest effect in models for the L and LL chondrite parent bodies, and least effect for the H chondrite parent. Metal‐troilite melting is also relevant to models of primitive achondrite parent bodies, particularly those that underwent only low degrees of silicate partial melting. Thermal models can predict proportions of petrologic types formed within an asteroid, but are systematically different from the statistics of meteorite collections. A sampling bias is interpreted to explain these differences.  相似文献   

2.
A slab of the Willamette ungrouped iron contains elongated troilite nodules (up to ~2 × 10 cm) that were crushed and penetrated by wedges of crushed metal during a major impact event. What makes this sample unique is the contrast between the large amount of shock damage and the very small (~1%) amounts of shock melting in the large troilite nodules. The postshock temperature was low, probably ?960 °C. The Widmanstätten pattern has been largely obscured by an episode of postshock annealing that caused recrystallization of the kamacite. The shock and thermal history of Willamette includes (1) initial crystallization and formation of multicentimeter‐size troilite nodules from trapped melt, (2) impact‐induced melting of metal‐sulfide assemblages to form lobate taenite masses a few hundred micrometers in size, (3) impact‐crushing of the nodules and jamming of metal wedges into them, (4) simultaneous crushing of metal grains adjacent to sulfide throughout the meteorite, (5) postshock annealing causing minor recrystallization of metal and troilite, and (6) a late‐stage shock event (and additional annealing) producing Neumann lines in the kamacite.  相似文献   

3.
An assemblage with FeNi metal, troilite, Fe‐Mn‐Na phosphate, and Al‐free chromite was identified in the metal‐troilite eutectic nodules in the shock‐produced chondritic melt of the Yanzhuang H6 meteorite. Electron microprobe and Raman spectroscopic analyses show that a few phosphate globules have the composition of Na‐bearing graftonite (Fe,Mn,Na)3(PO4)2, whereas most others correspond to Mn‐bearing galileiite Na(Fe,Mn)4(PO4)3 and a possible new phosphate phase of Na2(Fe,Mn)17(PO4)12 composition. The Yanzhuang meteorite was shocked to a peak pressure of 50 GPa and a peak temperature of approximately 2000 °C. All minerals were melted after pressure release to form a chondritic melt due to very high postshock heat that brought the chondrite material above its liquidus. The volatile elements P and Na released from whitlockite and plagioclase along with elements Cr and Mn released from chromite are concentrated into the shock‐produced Fe‐Ni‐S‐O melt at high temperatures. During cooling, microcrystalline olivine and pyroxene first crystallized from the chondritic melt, metal‐troilite eutectic intergrowths, and silicate melt glass finally solidified at about 950–1000 °C. On the other hand, P, Mn, and Na in the Fe‐Ni‐S‐O melt combined with Fe and crystallized as Fe‐Mn‐Na phosphates within troilite, while Cr combined with Fe and crystallized as Al‐free chromite also within troilite.  相似文献   

4.
Bulk chemical and mineral analyses of five L6 chondrites of shock facies d to f bring the number of L6 falls analyzed by Jarosewich to 20 and enable us: 1) to examine the chemical effects of shock melting in chondrites of the same petrologic type that presumably sample a limited stratigraphic range in their parent body; and 2) to seek depth-related chemical variations by comparing the compositions of L3 and melt-free L6 chondrites. The mean Fe/Mg, Si/Mg, S/Mg and Ni/Mg ratios of melt-free L6 chondrites (shock facies a to c) are virtually identical to those of L3 chondrites, suggesting that L-group material had the same bulk composition early (L6) and late (L3) in the accretion of the parent body. Wider variations of S/Mg and Ni/Mg in L6 chondrites may signify that L6 material was less well mixed than L3, or that some mobilization of metal and troilite occurred at shock intensities (facies c) too low to melt silicates. L6 chondrites that experienced shock melting of silicates (facies d to f) show wide variations of Fe/Mg, Si/Mg, S/Mg and Ni/Mg. It appears that most of the major element variation in the L-group is tertiary (shock-related) rather than primary (nebular, accretionary) or secondary (metamorphic). There is some evidence that L-group chondrites comprise two subgroups with different Fe/S ratios, but these subgroups are now poorly defined and their significance is unknown.  相似文献   

5.
Abstract— Metallic Cu of moderately high purity (~985 mg/g Cu, ~15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically ≤20 μm) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 × 10?4 vol%, corresponding to only 4–5% of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/mm2 have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilite; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.  相似文献   

6.
We studied textures and compositions of sulfide inclusions in unzoned Fe,Ni metal particles within CBa Gujba, CBa Weatherford, CBb HH 237, and CBb QUE 94411 in order to constrain formation conditions and secondary thermal histories on the CB parent body. Unzoned metal particles in all four chondrites have very similar metal and sulfide compositions. Metal particles contain different types of sulfides, which we categorize as: homogeneous low‐Cr sulfides composed of troilite, troilite‐containing exsolved daubreelite lamellae, arcuate sulfides that occur along metal grain boundaries, and shock‐melted sulfides composed of a mixture of troilite and Fe, Ni metal. Our model for formation proposes that the unzoned metal particles were initially metal droplets that formed from splashing by a partially molten impacting body. Sulfide inclusions later formed as a result of precipitation of excess S from solid metal at low temperatures, either during single stage cooling or during a reheating event by impacts. Sulfides containing exsolution lamellae record temperatures of ?600 °C, and irregular Fe‐FeS intergrowth textures suggest localized shock melting, both of which are indicative of heterogeneous heating by impact processes on the CB parent body. Our study shows that CBa and CBb chondrites formed in a similar environment, and also experienced similar secondary impact processing.  相似文献   

7.
Abstract— We studied the metallography of Fe‐Ni metal particles in 17 relatively unshocked ordinary chondrites and interpreted their microstructures using the results of P‐free, Fe‐Ni alloy cooling experiments (described in Reisener and Goldstein 2003). Two types of Fe‐Ni metal particles were observed in the chondrites: zoned taenite + kamacite particles and zoneless plessite particles, which lack systematic Ni zoning and consist of tetrataenite in a kamacite matrix. Both types of metal particles formed during metamorphism in a parent body from homogeneous, P‐poor taenite grains. The phase transformations during cooling from peak metamorphic temperatures were controlled by the presence or absence of grain boundaries in the taenite particles. Polycrystalline taenite particles transformed to zoned taenite + kamacite particles by kamacite nucleation at taenite/taenite grain boundaries during cooling. Monocrystalline taenite particles transformed to zoneless plessite particles by martensite formation and subsequent martensite decomposition to tetrataenite and kamacite during the same cooling process. The varying proportions of zoned taenite + kamacite particles and zoneless plessite particles in types 4–6 ordinary chondrites can be attributed to the conversion of polycrystalline taenite to monocrystalline taenite during metamorphism. Type 4 chondrites have no zoneless plessite particles because metamorphism was not intense enough to form monocrystalline taenite particles. Type 6 chondrites have larger and more abundant zoneless plessite particles than type 5 chondrites because intense metamorphism in type 6 chondrites generated more monocrystalline taenite particles. The distribution of zoneless plessite particles in ordinary chondrites is entirely consistent with our understanding of Fe‐Ni alloy phase transformations during cooling. The distribution cannot be explained by hot accretion‐autometamorphism, post‐metamorphic brecciation, or shock processing.  相似文献   

8.
Abstract— High speed friction experiments have been performed on the ordinary chondrites El Hammami (H5, S2) and Sahara 97001 (L6, S3) using an axial friction‐welding apparatus. Each sample was subjected to a strain rate of 103 to 104 s?1, which generated 250 to 500 μm‐deep darkened zones on each sample cube. Thin section analyses reveal that the darkened areas are composed of silicate glass and mineral fragments intermingled with dispersed submicron‐size FeNi and FeS blebs. Fracturing of mineral grains and the formation of tiny metallic veins define the extent of deformation beyond the darkened shear zone. These features are not present in the original meteorites. The shear zones and tiny veins are quite similar to certain vein systems seen in naturally deformed ordinary chondrites. The experiments show that shock deformation is not required for the formation of melt veins and darkening in ordinary chondrites. Therefore, the presence of melt veins and darkening does not imply that an ordinary chondrite has undergone severe shock deformation. In fact, high strain rate deformation and frictional melting are especially important for the formation of veins at low shock pressures.  相似文献   

9.
Abstract— The enstatite chondrite reckling peak (rkp) a80259 contains feldspathic glass, kamacite, troilite, and unusual sets of parallel fine‐grained enstatite prisms that formed by rapid cooling of shock melts. Metallic Fe,Ni and troilite occur as spherical inclusions in feldspathic glass, reflecting the immiscible Fe‐Ni‐S and feldspathic melts generated during the impact. The Fe‐Ni‐S and feldspathic liquids were injected into fractures in coarse‐grained enstatite and cooled rapidly, resulting in thin (≤ 10 μm) semicontinuous to discontinuous veins and inclusion trails in host enstatite. Whole‐rock melt veins characteristic of heavily shocked ordinary chondrites are conspicuously absent. Raman spectroscopy shows that the feldspathic material is a glass. Elevated MgO and SiO2 contents of the glass indicate that some enstatite and silica were incorporated in the feldspathic melt. Metallic Fe,Ni globules are enclosed by sulfide and exhibit Nienrichment along their margins characteristic of rapid crystallization from a Fe‐Ni‐S liquid. Metal enclosed by sulfide is higher in Si and P than metal in feldspathic glass and enstatite, possibly indicating lower O fugacities in metal/sulfide than in silicate domains. Fine‐grained, elongate enstatite prisms in troilite or feldspathic glass crystallized from local pyroxene melts that formed along precursor grain boundaries, but most of the enstatite in the target rock remained solid during the impact and occurs as deformed, coarsegrained crystals with lower CaO, Al2O3, and FeO than the fine‐grained enstatite. Reckling Peak A80259 represents an intermediate stage of shock melting between unmelted E chondrites and whole‐rock shock melts and melt breccias documented by previous workers. The shock petrogenesis of RKPA80259 reflects the extensive impact processing of the enstatite chondrite parent bodies relative to those of other chondrite types.  相似文献   

10.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   

11.
Abstract— On July 21, 2002, a meteorite fall occurred over the Thuathe plateau of western Lesotho. The well‐defined strewn field covers an area of 1.9 times 7.4 km. Many of the recovered specimens display a brecciated texture with leucocratic, angular to subrounded clasts in a somewhat darker groundmass. Mineralogical and chemical data, as well as oxygen isotopic analysis, indicate that Thuathe is an H4/5, S2/3 meteorite, with local H3 or H6 character. A number of anomalous features include somewhat high Co contents of kamacite and taenite relative to normal H‐group chondrites. Oxygen isotopic data plot at the edge of the normal H chondrite data field. Variable contents of metallic mineral phases and troilite result in a heterogeneous bulk composition (e.g., with regard to Si, Fe, and Mg), resulting in a spread of major element ratios that is not consistent with previously accepted H‐group composition. Trace element abundances are generally consistent with H chondritic composition, and Kr and Xe isotopic data agree with an H4 classification for this meteorite. Noble gas analysis gave U, Th‐4He gas retention and K‐Ar ages typical for H chondrites; no major thermal event affected this material since ~3.7 Ga. The exposure age for Thuathe is 5 Ma, somewhat lower than for other H chondrites. Cosmogenic nuclide analysis indicates a pre‐atmospheric radius of this meteorite between 35 and 40 cm. In the absence of evidence for solar gases, we classify Thuathe as a fragmental breccia. Numerous narrow, black veins cut across samples of Thuathe and are the result of a brittle deformation event that also caused local melting, especially in portions rich in sulfide. The formation of these veinlets is not the result of locally enhanced shock pressures (i.e., of shock melting) but rather of shearing under brittle conditions with local, friction‐related temperature excursions causing melting mostly of Fe‐sulfide and FeNi‐metal but also, locally, of silicate minerals. Frictional temperature excursions must have attained values in excess of 1500 °C to permit complete melting of forsteritic olivine.  相似文献   

12.
Abstract– Dhofar 458 is a lunar meteorite consisting mainly of olivine‐plagioclase intergrowths, pyroxene‐plagioclase intergrowths, and plagioclase fragments. Pyroxene‐plagioclase globules are also common. In this study, we report the discovery of a polycrystalline zircon in this lunar meteorite. The polycrystalline zircon contains small vesicles and rounded baddeleyite grains at its margin. The polycrystalline and porous texture of the zircon indicates high‐pressure shock‐induced melting and degassing. Baddeleyite grains are derived from decomposition of zircon under high postshock temperature. The shock features in zircon indicates that the shock pressure in Dhofar 458 was greater than approximately 60 GPa and the postshock temperature greater than approximately 1700 °C. The polycrystalline and degassing texture and decomposition zircon also strongly indicates that Dhofar 458 is a clast‐rich impact melt rock. During this shock event, most components were melted and grains of mafic minerals are interstitial to lath‐like plagioclase grains. Large fragments of olivine and chromite also formed polycrystalline texture at margins and chemically reequilibrated with surrounding melts. We suggest that pyroxene‐plagioclase globules could be remains of melted target clasts, whereas vesicles may form during shock‐induced degassing of the rock. The U‐Pb isotopic data plot on a well‐defined discordant line, yielding the age of the zircon of 3434 ± 15 Ma (2σ). This age is interpreted as the time of the impact event that melted Dhofar 458 and caused decomposition and recrystallization of this zircon in Dhofar 458, which reset this zircon’s U‐Pb age.  相似文献   

13.
Abstract— Shock defects in the most common silicate minerals of chondrites (olivine, pyroxenes and feldspars) have been investigated in detail, but there have been almost no studies of the shock defects in other components, like metal and sulfide. This probably stems from the fact that these latter phases are opaque in the optical microscope. The same reason explains why veins and melt pockets, which are constituted of microcrystalline or glassy phases (i.e., isotropic) are also poorly documented. We have investigated such phases by analytical transmission electron microscopy (ATEM) in two shocked chondrites, Tenham (L6) and Gaines County (H5). We have characterized shock defects in troilite very similar to those occurring in silicates (i.e., a mosaic texture and sets of straight and very narrow, ?10 nm, lamellae of amorphized FeS). There are many small regions in shocked chondrites that are composed of very fine grained (?1 μm) mixtures of metal and sulfide or of various silicates. They must result from local melting followed by a rapid cooling that prevented grain growth. We have determined the chemical compositions and the volume proportions of the tiny grains in these veins and melt pockets, which has allowed their temperature and pressure (T, P) history to be partially deciphered. Finally, we have observed a dense network of very narrow fractures (down to 10 nm) in the olivine and enstatite grains. These fractures are systematically filled with an amorphous (or cryptocrystalline) material that stems from the melt pockets and was injected when the fractures were opened by the rarefaction wave. This material was then quenched at the contact with the colder crystalline rims.  相似文献   

14.
The brecciation and shock classification of 2280 ordinary chondrites of the meteorite thin section collection at the Institut für Planetologie (Münster) has been determined. The shock degree of S3 is the most abundant shock stage for the H and LL chondrites (44% and 41%, respectively), while the L chondrites are on average more heavily shocked having more than 40% of rocks of shock stage S4. Among the H and LL chondrites, 40–50% are “unshocked” or “very weakly shocked.” Considering the petrologic types, in general, the shock degree is increasing with petrologic type. This is the case for all meteorite groups. The main criteria to define a rock as an S6 chondrite are the solid‐state recrystallization and staining of olivine and the melting of plagioclase often accompanied by the formation of high‐pressure phases like ringwoodite. These characteristics are typically restricted to local regions of a bulk chondrite in or near melt zones. In the past, the identification of high‐pressure minerals (e.g., ringwoodite) was often taken as an automatic and practical criterion for a S6 classification during chondrite bulk rock studies. The shock stage classification of many significantly shocked chondrites (>S3) revealed that most ringwoodite‐bearing rocks still contain more than 25% plagioclase (74%). Thus, these bulk chondrites do not even fulfill the S5 criterion (e.g., 75% of plagioclase has to be transformed into maskelynite) and have to be classified as S4. Studying chondrites on typically large thin sections (several cm2) and/or using samples from different areas of the meteorites, bulk chondrites of shock stage S6 should be extremely rare. In this respect, the paper will discuss the probability of the existence of bulk rocks of S6.  相似文献   

15.
Abstract— Metal‐troilite textures are examined in metamorphosed and impact‐affected ordinary chondrites to examine the response of these phases to rapid changes in temperature. Complexly intergrown metal‐troilite textures are shown to form in response to three different impact‐related processes. (1) During impacts, immiscible melt emulsions form in response to spatially focused heating. (2) Immediately after impact events, re‐equilibration of heterogeneously distributed heat promotes metamorphism adjacent to zones of maximum impact heating. Where temperatures exceed ~850 ° C, this post‐impact metamorphism results in melting of conjoined metal‐troilite grains in chondrites that were previously equilibrated through radiogenic metamorphism. When the resulting Fe‐Ni‐S melt domains crystallize, a finely intergrown mixture of troilite and metal forms, which can be zoned with kamacite‐rich margins and taenite‐rich cores. (3) At lower temperatures, post‐impact metamorphism can also cause liberation of sulfur from troilite, which migrates into adjacent Fe‐Ni metal, allowing formation of troilite and occasionally copper within the metal during cooling. Because impact events cause heating within a small volume, post‐impact metamorphism is a short duration event (days to years) compared with radiogenic metamorphism (>106 years). The fast kinetics of metal‐sulfide reactions allows widespread textural changes in conjoined metal‐troilite grains during post‐impact metamorphism, whereas the slow rate of silicate reactions causes these to be either unaffected or only partially annealed, except in the largest impact events. Utilizing this knowledge, information can be gleaned as to whether a given meteorite has suffered a post‐impact thermal overprint, and some constraints can be placed on the temperatures reached and duration of heating.  相似文献   

16.
Abstract— –Literature data show that, among EH chondrites, the Abee impact‐melt breccia exhibits unusual mineralogical characteristics. These include very low MnO in enstatite (<0.04 wt%), higher Mn in troilite (0.24 wt%) and oldhamite (0.36 wt%) than in EH4 Indarch and EH3 Kota‐Kota (which are not impact‐melt breccias), low Mn in keilite (3.6–4.3 wt%), high modal abundances of keilite (11.2 wt%) and silica (~7 wt%, but ranging up to 16 wt% in some regions), low modal abundances of total silicates (58.8 wt%) and troilite (5.8 wt%), and the presence of acicular grains of the amphibole, fluor‐richterite. These features result from Abee's complex history of shock melting and crystallization. Impact heating was responsible for the loss of MnO from enstatite and the concomitant sulfidation of Mn. Troilite and oldhamite grains that crystallized from the impact melt acquired relatively high Mn contents. Abundant keilite and silica also crystallized from the melt; these phases (along with metallic Fe) were produced at the expense of enstatite, niningerite and troilite. Melting of the latter two phases produced a S‐rich liquid with higher Fe/Mg and Fe/Mn ratios than in the original niningerite, allowing the crystallization of keilite. Prior to impact melting, F was distributed throughout Abee, perhaps in part adsorbed onto grain surfaces; after impact melting, most of the F that was not volatilized was incorporated into crystallizing grains of fluor‐richterite. Other EH‐chondrite impact‐melt breccias and impact‐melt rocks exhibit some of these mineralogical features and must have experienced broadly similar thermal histories.  相似文献   

17.
We determined the shock‐darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post‐shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock‐darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not‐shock‐related triggers for iron melt.  相似文献   

18.
Three‐dimensional X‐ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pu?tusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase‐rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal‐sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post‐impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal‐rich and sulfide‐rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen‐rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F‐apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.  相似文献   

19.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

20.
Abstract— Shock‐recovery experiments were carried out on samples of the H6 chondrite Kernouvé at shock pressures of 10, 15, 20, 25, 30, 35, 45, and 60 GPa and preheating temperatures of 293 K (low‐temperature experiments) and 920 K (high‐temperature experiments). Using a calculated equation of state of Kernouvé, pressure‐pulse durations of 0.3 to 1.2 μs were estimated. The shocked samples were investigated by optical microscopy to calibrate the various shock effects in olivine, orthopyroxene, oligoclase, and troilite. The following pressure calibration is proposed for silicates: (1) undulatory extinction of olivine <GPa; (2) weak mosaicism of olivine from 10–15 GPa to 20–25 GPa; (3) onset of strong mosaicism of olivine at 20–25 GPa; (4) transformation of oligoclase to diaplectic glass completed at 25–30 GPa (low‐temperature experiments) and at 20–25 GPa (high‐temperature experiments); (5) onset of weak mosaicism in orthopyroxene at 30–35 GPa (low‐temperature experiments) and at 25–30 GPa (high‐temperature experiments); and (6) recrystallization or melting of olivine starting at 45–60 GPa (low‐temperature experiments) and at 35–45 GPa (high‐temperature experiments), and completed above 45–60 GPa in the high‐temperature experiments. Troilite displays distinct differences between the samples shocked at low and high temperatures. In the low‐temperature experiments, the following effects can be observed in troilite: (1) undulatory extinction up to 25 GPa, (2) twinning up to 45 GPa, (3) partial recrystallization from 30 to 60 GPa, and (4) complete recrystallization >35 GPa; whereas in the high‐temperature experiments, troilite shows (1) complete recrystallization from 10 up to 45 GPa and (2) melting and crystallization above 45 GPa. Localized shock‐induced melting is observed in samples shocked to pressures >15 GPa in the high‐temperature experiments and >30 GPa for the low‐temperature experiments in the form of FeNi metal and troilite melt injections and intergrowths and as pockets and veins of whole‐rock melt. Obviously, the onset and abundance of shock‐induced localized melting strongly depends on the initial temperature of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号