首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
《Gondwana Research》2009,15(4):644-662
The integration of new and published geochronologic data with structural, magmatic/anatectic and pressure–temperature (P–T) process information allow the recognition of high-grade polymetamorphic granulites and associated high-grade shear zones in the Central Zone (CZ) of the Limpopo high-grade terrain in South Africa. Together, these two important features reflect a major high-grade D3/M3 event at ~ 2.02 Ga that overprinted the > 2.63 Ga high-grade Neoarchaean D2/M2 event, characterized by SW-plunging sheath folds. These major D2/M2 folds developed before ~ 2.63 Ga based on U–Pb zircon age data for precursors to leucocratic anatectic gneisses that cut the high-grade gneissic fabric. The D3/M3 shear event is accurately dated by U–Pb monazite (2017.1 ± 2.8 Ma) and PbSL garnet (2023 ± 11 Ma) age data obtained from syntectonic anatectic material, and from sheared metapelitic gneisses that were completely reworked during the high-grade shear event. The shear event was preceded by isobaric heating (P = ~ 6 kbar and T = ~ 670–780 °C), which resulted in the widespread formation of polymetamorphic granulites. Many efforts to date high-grade gneisses from the CZ using PbSL garnet dating resulted in a large spread of ages (~ 2.0–2.6 Ga) that reflect the polymetamorphic nature of these complexly deformed high-grade rocks.  相似文献   

2.
L. Millonig  A. Zeh  A. Gerdes  R. Klemd 《Lithos》2008,103(3-4):333-351
The Bulai pluton represents a calc-alkaline magmatic complex of variable deformed charnockites, enderbites and granites, and contains xenoliths of highly deformed metamorphic country rocks. Petrological investigations show that these xenoliths underwent a high-grade metamorphic overprint at peak P–T conditions of 830–860 °C/8–9 kbar followed by a pressure–temperature decrease to 750 °C/5–6 kbar. This P–T path is inferred from the application of P–T pseudosections to six rock samples of distinct bulk composition: three metapelitic garnet–biotite–sillimanite–cordierite–plagioclase–(K-feldspar)–quartz gneisses, two charnoenderbitic garnet–orthopyroxene–biotite–K-feldspar–plagioclase–quartz gneisses and an enderbitic orthopyroxene–biotite–plagioclase–quartz gneiss. The petrological data show that the metapelitic and charnoenderbitic gneisses underwent uplift, cooling and deformation before they were intruded by the Bulai Granite. This relationship is supported by geochronological results obtained by in situ LA-ICP-MS age dating. U–Pb analyses of monazite enclosed in garnet of a charnoenderbite gneiss provide evidence for a high-grade structural-metamorphic–magmatic event at 2644 ± 8 Ma. This age is significantly older than an U–Pb zircon crystallisation age of 2612 ± 7 Ma previously obtained from the surrounding, late-tectonic Bulai Granite. The new dataset indicates that parts of the Limpopo's Central Zone were affected by a Neoarchaean high-grade metamorphic overprint, which was caused by magmatic heat transfer into the lower crust in a ‘dynamic regional contact metamorphic milieu’, which perhaps took place in a magmatic arc setting.  相似文献   

3.
The South Indian Craton is composed of low-grade and high-grade metamorphic rocks across different tectonic blocks between the Moyar–Bhavani and Palghat–Cauvery shear zones and an elongated belt of eastern margin of the peninsular shield. The Madras Block north of the Moyar–Bhavani shear zone, which evolved throughout the Precambrian period, mainly consists of high-grade metamorphic rocks. In order to constrain the evolution of the charnockitic region of the Pallavaram area in the Madras Block we have undertaken palaeomagnetic investigation at 12 sites. ChRM directions in 61 oriented block samples were investigated by Alternating Field (AF) and Thermal demagnetization. Titanomagnetite in Cation Deficient (CD) and Multi Domain (MD) states is the remanence carrier. The samples exhibit a ChRM with reverse magnetization of Dm = 148.1, Im = + 48.6 (K = 22.2, α95 = 9.0) and a palaeomagnetic pole at 37.5 °N, 295.6 °E (dp/dm = 7.8°/11.8°). This pole plots at a late Archaean location on the Indian Apparent Polar Wander Path (APWP) suggesting an age of magnetization in the Pallavaram charnockites as 2600 Ma. The nearby St. Thomas Mount charnockites indicate a period of emplacement at 1650 Ma (Mesoproterozoic). Thus the results of Madras Block granulites also reveal crustal evolution similar to those in the Eastern Ghats Belt with identical palaeopoles from both the areas.  相似文献   

4.
U–Pb sensitive high resolution ion microprobe (SHRIMP) dating of zircons from charnockitic and garnet–biotite gneisses from the central portion of the Mozambique belt, central Tanzania indicate that the protolith granitoids were emplaced in a late Archaean, ca. 2.7 Ga, magmatic event. These ages are similar to other U–Pb and Pb–Pb ages obtained for other gneisses in this part of the belt. Zircon xenocrysts dated between 2.8 and 3.0 Ga indicate the presence of an older basement. Major and trace element geochemistry of these high-grade gneisses suggests that the granitoid protoliths may have formed in an active continental margin environment. Metamorphic zircon rims and multifaceted metamorphic zircons are dated at ca. 2.6 Ga indicating that these rocks were metamorphosed some 50–100 my after their emplacement. Pressure and temperature estimates on the charnockitic and garnet–biotite gneisses were obscured by post-peak metamorphic compositional homogenisation; however, these estimates combined with mineral textures suggest that these rocks underwent isobaric cooling to 800–850 °C at 12–14 kbar. It is considered likely that the granulite facies mineral assemblage developed during the ca. 2.6 Ga event, but it must be considered that it might instead represent a pervasive Neoproterozoic, Pan African, granulite facies overprint, similar to the ubiquitous eastern granulites further to the east.  相似文献   

5.
Systematic geochronologic, geochemical, and Nd isotopic analyses were carried out for an early Paleoproterozoic high-K intrusive complex exposed in southwestern Tarim, NW China. The results provide a better understanding of the Paleoproterozoic tectonic evolution of the Tarim Block. Zircon U–Pb age dating indicates two Paleoproterozoic magmatic episodes occurring at ca. 2.41 Ga and ca. 2.34 Ga respectively, which were followed by a ca. 1.9 Ga metamorphic event. The 2.41 Ga granodiorite–adamellite suite shares characteristics of late to post-orogenic metaluminous A-type granites in its high alkalinity (Na2O + K2O = 7.6–9.3%), total REE (410–788 ppm), Zr (370–660 ppm), and Y (21.7–58.4 ppm) contents. εNd(t) values for the suite range from − 3.22 to − 4.71 and accordingly the Nd modal ages (T2DM) vary between 3.05 Ga and 3.17 Ga. Based on geochemical data, the 2.34 Ga suite can be subdivided into two sub-suites, namely A-type and S-type. However, both types have comparable Nd isotope compositions (εNd(t) ≈ − 0.41 to − 2.08) and similar narrow T2DM ranges (2.76–2.91 Ga).Geochemical and Nd isotopic data for the high-K intrusive complex, in conjunction with the regional geological setting, suggest that both the 2.41 Ga suite and the 2.34 Ga A-type sub-suite might have been produced by partial melting of the Archean mafic crust in a continental rift environment. The S-type sub-suite is thought to have formed by partial melting of felsic pelites and/or metagreywackes recycled from Archean crust (TTG?). Gabbro enclaves with positive εNd(t) value (2.15) have been found to be intermingling within the 2.34 Ga suite; ca. 2.34–2.36 Ga gabbroic dykes and adamellites have previously been documented in eastern Tarim. These observations indicate that the high-K intrusions may reflect the emergence of depleted mantle upwelling beneath the Tarim Block at that time. We suggest a three-stages model for the Precambrian crustal evolution in the Tarim Block: (1) the formation of proto-crust (TTG) by ca. 2.5 Ga, (2) episodes of felsic magmatism possibly occurring in continental rift environments at ca. 2.41 Ga and ca. 2.34–2.36 Ga, and (3) ca. 1.9 Ga metamorphism that may represent the solidification of the Precambrian basement of the Tarim Block.  相似文献   

6.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   

7.
This paper reports a study of the metamorphic evolution of pelitic, semi-pelitic migmatites and mafic granulites of the Chafalote Metamorphic Suite (CMS), Uruguay, which represents the southernmost exposures of high-grade metamorphic rocks in the Dom Feliciano Belt, Uruguain—Sul-Rio-Grandense shield, South America. This belt is one of the Brasiliano orogens that crop out along the Brazilian and Uruguayan Atlantic margin, and the CMS is one of several disconnected segments of supracrustal rock in a dominantly granitic terrain. Petrological evidence from CMS mafic granulites and semi-pelitic migmatites indicates four distinct metamorphic assemblages. The early prograde assemblage (M1) is preserved only as inclusions in porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by near-isothermal decompression (M3), which resulted in symplectites and coronitic textures in the mafic granulites and compositional zoning of Ca in garnet (decreasing rimwards) and plagioclase (increasing rimwards) in the semi-pelitic migmatites. The retrograde metamorphic assemblage (M4) is represented by hydration reaction textures replacing minerals of the M2 and M3 assemblages. Average PT calculations using the program THERMOCALC and conventional thermobarometric methods yield peak-metamorphic (M2) PT conditions of 7–10 kbar and 830–950 °C, near-decompressional (M3) PT conditions of 4.8–5.5 kbar and 788–830 °C and M4 retrograde PT conditions of 3–6 kbar and 600–750 °C. The calculated PT path for the CMS rocks is ‘clockwise’ and incorporates a near-isothermal decompression segment followed by minor cooling, consistent with a history of crustal thickening followed by extensional collapse at ca. 650–600 Ma. The metamorphism recorded by rocks of this crustal segment may be correlated with 650 Ma metamorphism in the Coastal Terrane of the Kaoko Belt in Namibia, being the first unequivocal match between South America and Africa provided by crystalline rocks south of the Congo Craton.  相似文献   

8.
In this paper, we compare the petrological histories of the Kemp Land Coast (east Antarctica), and Gokavaram area (Eastern Ghats), that were supposed to have been juxtaposed. The area around Gokavaram is dominated by different varieties of paragneisses (pelitic, quartzofeldspathic, and calcareous composition) with relatively minor amounts of orthogneisses (mafic, enderbitic, and granitic composition). The rocks were involved in three major phases of deformation, and were finally affected by localised shear movement. On the basis of reaction textures, well preserved in high Mg-Al granulites, and calc-silicate granulites, and geothermobarometric data we deduce a polymetamorphic evolution of the rocks. Following an early M1 metamorphism culminating at 9.2–9.4 kbar, > 950°C, the rocks cooled nearly isobarically down to 850°C. During a subsequent M2 metamorphism, near isothermal decompression to 5–6 kbar occurred. This was followed by near isobaric cooling down to 600–650°C. M3 is a weak amphibolite facies overprint, largely restricted to late shears, which involved hydration as well. Available radiometric data from this area can be interpreted in terms of partial resetting of U-Pb systematics in older sphenes due to M3 metamorphism at ca. 550 Ma. Despite the absence of sufficient isotopic data on the Eastern Ghats granulites, we document a remarkable similarity in the petrological history of the two supposedly erstwhile neighbours.  相似文献   

9.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

10.
The Mozambique Belt (MB) of the East Africa Orogen contains large areas of granulite-facies migmatitic gneisses with Archaean and Palaeoproterozoic protolith ages and that were recycled during the Neoproterozoic Pan-African orogeny. The study area is situated along the Great Ruaha River and within the Mikumi National Park in central Tanzania where migmatitic gneisses and mafic to intermediate granulites are interlayered with Neoproterozoic granulite-facies migmatitic metapelites. Mineral textures suggest isothermal decompression, with the peak mineral assemblage comprising Grt–Bt–Ky–Kfs–Pl–Qtz ± Phn ± Ti-Oxide ± melt and amphibolite-facies retrograde assemblage Grt–Bt–Sil–Ms–Kfs–Pl–Qtz ± Fe–Ti-Oxide. The near isothermal retrograde overprint is seen in well-developed formation of pseudomorphs after garnet. The HP granulite-facies assemblages record PT conditions of 13–14 kbar at 760–800 °C. Retrogression and the release of fluids from crystallizing melts occurred at 7 kbar and 650–700 °C. A fluid inclusion study shows three types of fluid inclusion consisting of nearly pure CO2, as well as H2O–NaCl and H2O–CO2 mixtures. We suggest that a immiscible CO2-bearing brine represents the fluid composition during high-grade peak metamorphism, and that the fluid inclusions containing H2O–NaCl or nearly pure CO2 represent trapped fluids from in situ crystallised melt. The results suggest strong isothermal decompression, which is probably related to a fast exhumation after crustal thickening in the central part of the Mozambique Belt in Tanzania.  相似文献   

11.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

12.
Three types of eclogite, together with a serpentinized harzburgite, coexist as blocks within granitic and pelitic gneisses along the Shaliuhe cross section, the eastern part of the North Qaidam continental-type ultrahigh-pressure (UHP) metamorphic belt, NW China. The olivine (Ol1) and orthopyroxene in the harzburgite are compositionally similar to present-day abyssal peridotites. The kyanite–eclogite is derived from a troctolitic protolith, whereas the epidote–eclogite from a gabbroic protolith, both having distinct positive Eu anomalies, low TiO2, and high Al2O3 and MgO. The kyanite–eclogite shows inherited cumulate layering. The phengite–eclogite has high TiO2, low Al2O3 and MgO with incompatible trace elements resembling enriched-type MORB. Sr–Nd isotope data indicate that the protoliths of both kyanite–eclogite and epidote–eclogite ([87Sr/86Sr]i ~ 0.703–0.704; εNd(T) ~ 5.9–8.0) are of mantle origin (e.g., ocean crust signatures). On the other hand, while the lower εNd(T) value (1.4–4.1) of phengite–eclogite is more or less consistent with an enriched MORB protolith, their high [87Sr/86Sr]i ratio (0.705–0.716) points to an additional enrichment in their history, probably in an subduction-zone environment. Field relations and geochemical analyses suggest that the serpentinized harzburgite and the three types of eclogite constitute the oceanic lithological section of an ophiolitic sequence from mantle peridotite, to cumulate, and to upper basaltic rocks. The presence of coesite pseudomorphs and quartz exsolution in omphacite plus thermobarometric calculations suggests that the eclogites have undergone ultrahigh pressure metamorphism (i.e., peak P ≥ 2.7 GPa). The harzburgite may also have experienced the same metamorphism, but the lack of garnet suggests that the pressure conditions of ≤ 3.0 GPa. Zircon U–Pb SHRIMP dating shows that the eclogites have a protolith age of 516 ± 8 Ma and a metamorphic age of 445 ± 7 Ma. These data indicate the presence of a Paleo-Qilian Ocean between Qaidam and Qilian blocks before the early Ordovician. The ophiolitic assemblage may be the relics of subducted oceanic crust prior to the subduction of continental materials during Ordovician–Silurian times and ultimate continent collision. These rocks, altogether, record a complete history of ocean crust subduction, to continental subduction, and to continental collision.  相似文献   

13.
A single zircon geochronological study of gneisses from the Obudu Plateau of southeastern Nigeria, using the evaporation technique, indicates that zircons recorded several Precambrian high-grade metamorphic events (Eburnean and Pan-African). Igneous and multifaceted metamorphic zircons yielded 207Pb/206Pb ages of 2062.4 ± 0.4 Ma, 1803.8 ± 0.4 Ma and 574 ± 10 Ma, respectively and confirm for the first time that granulite-facies metamorphism affected the basement of southeastern Nigeria, resulting in the formation of charnockites and granulitic gneisses. The Pan-African high-grade event was coeval with the formation of granulites in Cameroon, Togo and Ghana and resulted from collisional processes during continental amalgamation to form the Gondwana supercontinent. The sources of the sediments, which were deposited at ≈605 Ma and metamorphosed at 574 Ma, comprise older igneous and metamorphic protoliths (including inherited xenocrystic zircons up to 2.5 Ga in age). The Palaeoproterozoic zircons seem to have survived Pan-African melting.  相似文献   

14.
J.D.A. Piper   《Tectonophysics》2007,432(1-4):133-157
The Southern Uplands terrane is an Ordovician–Silurian back-arc/foreland basin emplaced at the northern margin of the Iapetus Ocean and intruded by granite complexes including Loch Doon (408.3 ± 1.5 Ma) during Early Devonian times. Protracted cooling of this 130 km3 intrusion recorded magnetic remanence comprising a predominant (‘A’) magnetisation linked to initial cooling with dual polarity and mean direction D / I = 237 / 64° (α95 = 4°, palaeopole at 316°E, 21°N). Subsidiary magnetisations include Mesozoic remanence correlating with extensional tectonism in the adjoining Irish Sea Basin (‘B’, D / I = 234/− 59°) and minority populations (‘C’, D / I = 106/− 2° and ‘D’, D / I = 199/1°) recording emplacement of younger ( 395 Ma) granites in adjoining terranes and the Variscan orogenic event. The ‘A’ directions have an arcuate distribution identifying anticlockwise rotation during cooling. A comparable rotation is identified in the Orthotectonic Caledonides to the north and the Paratectonic Caledonides to the south following closure of Iapetus. Continental motion from midsoutherly latitudes ( 40°S) at 408 Ma to equatorial palaeolatitudes by  395 Ma is identified and implies minimum rates of continental movement between 430 and 390 Ma of 30–70 cm/year, more than double maximum rates induced by plate forces and interpreted as a signature of true polar wander. Silurian–Devonian palaeomagnetic data from the British–Scandinavian Caledonides define a 430–385 Ma closed loop comparable to the distributed contemporaneous palaeomagnetic poles from Gondwana. They reconcile pre-430 Ma and post-380 Ma APW from this supercontinent and show that Laurentia–Baltica–Avalonia lay to the west of South America with a relict Rheic Ocean opening to the north which closed to produce Variscan orogeny by a combination of pivotal closure and right lateral transpression.  相似文献   

15.
Shoshonitic series volcanic rocks (SSVR) and adakites are widely distributed in the Permian terrestrial volcanic strata of the Yishijilike–Awulale range of west Tianshan, north Xinjiang, China. Isotopic dating yields Permian ages of 280–250 Ma. The SSVR include absarokite, shoshonite and banakite which are characterized by enrichment of alkalis, particularly in K, combined with lower Ti, higher Al (A/NKC = 0.70–0.99, metaluminous) and Fe2O3 > FeO. The SSVR that are rich in LILE with high REE contents and Eu/Eu range from 0.59 to 1.30. They are rich in LREE ((La/Yb)N 2.15–11.97) and depleted in Nb, Ta and Ti (TNT negative anomalies). The adakites are metaluminous to weakly peraluminous (A/NKC = 0.85-1.16) and belong to the high-SiO2 type of adakite (HSA, SiO2 = 62%–71%). They are characterized by lower ΣREE with strong LREE enrichment ((La/Yb)N 13–35). Pronounced positive Eu anomalies (Eu/Eu = 1.02–1.27), very low Yb contents and distinct TNT-negative anomalies are evident. The SSVR have εNd(t) (+ 1.28 to + 4.92) and (87Sr/86Sr)i (0.7041–0.7057) that are similar to adakites in the regions which are characterized by εNd(t) = 0.95 to + 5.69 and (87Sr/86Sr)i = 0.7050–0.7053. Trace element, REE and Sr/Nd isotopic compositions suggest that both SSVR and adakites possess similar source regions associated with underplated mantle-derived basaltic materials. Lithosphere extension driven by magmatic underplating was responsible for the generation of both the SSVR and adakites. This magmatism serves as a petrological indicator of underplating during the Permian. Obviously thickened crust (62–52 km), a complex Moho discontinuity, high heat flow (~ 100 mw·m− 2), widespread contemporary alkali-rich granites, basic dike swarms (K–Ar ages of 187–271 Ma, Ar–Ar ages of 174–270 Ma and Rb–Sr ages of 255 ± 28 Ma; εNd(t) + 1.84 to + 10.1; (87Sr/86Sr)i 0.7035 and 0.7065), and basic granulites (SHRIMP U–Pb age of 268–279 ± 5.6 Ma) provide additional evidences for the underplating event in this area during Permian.  相似文献   

16.
The Temaguessine high-level subcircular pluton is intrusive into the LATEA metacraton (Central Hoggar) Eburnian (2 Ga) basement and in the Pan-African (615 Ma) granitic batholiths along a major NW–SE oriented major shear zone. It is dated here (SHRIMP U–Pb on zircon) at 582 ± 5 Ma. Composed of amphibole–biotite granite and biotite syenogranite, it comprises abundant enclaves: mafic magmatic enclaves, country-rock xenoliths and remarkable Fe-cordierite (#Fe = 0.87) orbicules. The orbicules have a core rich in cordierite (40%) and a leucocratic quartz–feldspar rim. They are interpreted as resulting from the incongruent melting of the meta-wacke xenoliths collapsed into the magma: the breakdown of the biotite + quartz assemblage produced the cordierite and a quartz–feldspar minimum melt that is expelled, forming the leucocratic rim. The orbicule generation occurred at T < 850° and P < 0.3 GPa. The Fe-rich character of the cordierite resulted from the Fe-rich protolith (wacke with 4% Fe2O3 for 72% SiO2). Strongly negative εNd (−9.6 to −11.2), Nd TDM model ages between 1.64 and 1.92 Ga, inherited zircons between 1.76 and 2.04 Ga and low to moderately high ISr (0.704–0.710) indicate a Rb-depleted lower continental crust source for the Temaguessine pluton; regional considerations impose however also the participation of asthenospheric material. The Temaguessine pluton, together with other high-level subcircular pluton, is considered as marking the end of the Pan-African magma generation in the LATEA metacraton, resulting from the linear delamination along mega-shear zones, allowing asthenospheric uprise and melting of the lower continental crust. This implies that the younger Taourirt granitic province (535–520 Ma) should be considered as a Cambrian intraplate anorogenic event and not as a very late Pan-African event.  相似文献   

17.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   

18.
Marble-hosted ruby deposits represent the most important source of colored gemstones from Central and South East Asia. These deposits are located in the Himalayan mountain belt which developed during Tertiary collision of the Indian plate northward into the Eurasian plate. They are spatially related to granitoid intrusions and are contained in platform carbonates series that underwent high-grade metamorphism. All occurrences are located close to major tectonic features formed during Himalayan orogenesis, directly in suture zones in the Himalayas, or in shear zones that guided extrusion of the Indochina block after the collision in South East Asia. Ar–Ar dating of micas syngenetic with ruby and U–Pb dating of zircon included in ruby gives evidence that these deposits formed during Himalayan orogenesis, and the ages document the extensional tectonics that were active, from Afghanistan to Vietnam, between the Oligocene and the Pliocene.The petrography shows that ruby-bearing marbles formed in the amphibolite facies (T = 610 to 790 °C and P ~ 6 kbar). A fluid inclusion study defines the conditions of gem ruby formation during the retrograde metamorphic path (620 < T < 670 °C and 2.6 < P < 3.3 kbar) for the deposits of Jegdalek, Hunza and northern Vietnam.Whole rock analyses of non-ruby-bearing marbles indicate that they contain enough aluminum and chromiferous elements to produce all the ruby crystals that they contain. In addition, (C, O)-isotopic analyses of carbonates from the marbles lead to the conclusion that the marbles acted as a metamorphic closed fluid system that were not infiltrated by externally-derived fluids. The carbon isotopic composition of graphite in marbles reveals that it is of organic origin and that it exchanged C-isotopes with the carbonates during metamorphism. Moreover, the O-isotopic composition of ruby was buffered by metamorphic CO2 released during devolatilisation of marble and the H-isotopic composition of mica is consistent with a metamorphic origin for water in equilibrium with the micas. The (C, O, H)-isotopic compositions of minerals associated with marble-hosted ruby are all in agreement with the hypothesis, drawn from the unusual chemistry of CO2–H2S–COS–S8–AlO(OH)-bearing fluids contained in fluid inclusions, that gem ruby formed at P ~ 3 kbar and 620 < T < 670 °C, during thermal reduction of evaporite by organic matter, at high temperature-medium pressure metamorphism of platform carbonates during the Tertiary India–Asia collision. The carbonates were enriched in Al- and chromiferous-bearing detrital minerals, such as clay minerals that were deposited on the platform with the carbonates, and in organic matter. Ruby formed during the retrograde metamorphic path, mainly by destabilization of muscovite or spinel. The metamorphic fluid system was rich in CO2 released from devolatilisation of carbonates, and in fluorine, chlorine and boron released by molten salts (NaCl, KCl, CaSO4). Evaporites are key to explaining the formation of these deposits. Molten salts mobilized in situ Al and metal transition elements contained in marbles, leading to crystallization of ruby.  相似文献   

19.
The paper is a first attempt to unravel the Archean multi-stage metaplutonic assemblage of the Meso/Neoarchean terrane of the State of Goiás, Central Brazil, by means of the U–Pb SHRIMP zircon and Sm–Nd techniques. Two stages of granitic plutonism, spanning ca. 140 m.y., were precisely established for the accretion of the gneiss protoliths. The earliest stage embraces tonalitic to granodioritic and minor granitic orthogneisses with Nd juvenile signature, emplaced from ca. 2845 to ca. 2785 Ma, interpreted as the roots of an early arc. Inherited zircon xenocrysts and Nd isotopic data indicate that the juvenile magmas underwent contamination from a sialic crust as old as 3.3 Ga, from which there are, so far, no recognizable exposures. The second stage comprises granodioritic to granitic gneisses and lasted from ca. 2711 to 2707 Ma. Based on their Nd isotopic signatures and on inherited zircon crystals, their protoliths are interpreted as dominantly crustal-derived. The SHRIMP data from zircon crystals did not depict a Paleoproterozoic overprinting on the Archean gneisses, which is due to geological processes with prevailing temperatures below the isotopic stability of the U/Pb/Th system in the mineral. These processes comprise crustal extension and intrusion of a mafic dike swarm at ca. 2.3 Ga, followed by low grade events mostly related to shear zones between ca. 2.15 and 2.0 Ga. The study also revealed the extent of the Pan- African tectono-thermal overprinting on the Archean orthogneisses. Most of the zircon populations show morphological evidence of metamorphic peripheral recrystallization dated between ca. 750 and 550 Ma. One of the banded gneisses with a crystallization age of ca. 2700 Ma (2σ) has a more complex zircon population including magmatic new grains, which yielded a precise 206Pb/238U crystallization age of 590 ± 10 Ma (2σ). These new grains are interpreted to have grown in anatectic veins injected within strongly sheared gneiss.The data characterize a widespread Pan-African-aged metamorphic overprinting, culminating with localized anatexis of the Archean orthogneisses.  相似文献   

20.
The polyphase evolution of the Seridó Belt (NE-Brazil) includes D1 crust formation at 2.3–2.1 Ga, D2 thrust tectonics at 1.9 Ga and crustal reworking by D3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D2 and D3 events were used to constrain the tectono-thermal evolution of the belt. D2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600–650 °C) through grain boundary migration, subgrain rotation and operation of quartz c-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from c-prism to positive and negative a-rhombs. During D3, enhancement of ductility by dissipation of heat that came from syn-D3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from a-prism to a-basal slip indicates a thermal path from 600 to 350 °C. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Seridó Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号