首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decomposition of plant litter is a fundamental ecological process in small forest streams. Litter decomposition is mostly controlled by litter characteristics and environmental conditions, with shredders playing a critical role. The aim of this study was to evaluate the effect of leaf species (Maprounea guianensis and Inga laurina, which have contrasting physical and chemical characteristics) and water nutrient enrichment (three levels) on leaf litter chemical characteristics and fungal biomass, and subsequent litter preference and consumption by Phylloicus sp. (a typical shredder in tropical streams). Maprounea guianensis leaves had lower lignin and nitrogen (N) concentrations, higher polyphenols concentration and lower lignin:N ratio than I. laurina leaves. Phosphorus concentrations were higher for both leaf species incubated at the highest water nutrient level. Fungal biomass was higher on M. guianensis than on I. laurina leaves, but it did not differ among nutrient levels. Relative consumption rates were higher when shredders fed on M. guianensis than on I. laurina leaves, due to the lower lignin:N ratio and higher fungal biomass of M. guianensis. Consumption rates on M. guianensis leaves were higher for those exposed to low water nutrient levels than for those exposed to moderate water nutrient levels. Feeding preferences by shredders were not affected by leaf species or nutrient level. The low carbon quality on I. laurina leaves makes it a less attractive substrate for microbial decomposers and a less palatable resource for shredders. Changes in litter input characteristics may be more important than short-term nutrient enrichment of stream water on shredder performance and ecosystem functioning.  相似文献   

2.
The inputs and breakdown of terrestrial leaf litter in streams is a fundamental ecological process that sustains in-stream foodwebs and secondary production. In temporary rivers, litter breakdown is reduced during dry phases, but the long-term effect of alternating drying and wetting cycles on litter breakdown is still poorly understood. We tested the hypothesis that leaf litter breakdown (LLB) in temporary rivers is primarily controlled by flow permanence (the number of flowing days over a given period expressed in %), and that drying events affect LLB during leaf fall periods through reduction of microbial activity and the modification of aquatic invertebrate assemblages. LLB rates (k), microbial activity and invertebrate assemblages were determined in winter at ten cross-sections scattered along a flow permanence gradient on the temporary Albarine River, France. Results demonstrated that summer drying events affected the breakdown process for up to 6 months after flow has resumed in the river. LLB rates decreased exponentially with decreasing flow permanence, and with increasing drying event duration and frequency. These exponential relationships were observed for flow permanence variables calculated for the river for both 24-years and 1-year time periods prior to the experiment. A decrease in flow permanence from 100 to 85% led to a four-fold decrease in leaf litter breakdown rate. Microbial activity, which typically did not differ between cross-sections, failed to explain the between-cross-section differences in k. By contrast, invertebrate assemblages and, shredders, in particular, decreased exponentially with decreasing flow permanence and with increasing drying event duration and frequency.  相似文献   

3.
比较了毛竹、石栎和山胡椒叶片的理化属性,采用粗网叶袋法研究了三种落叶在太湖流域上游西苕溪中的分解过程,探讨了毛竹叶成为溪流优势外来能源后对溪流生态过程和底栖动物群落结构的影响.三种落叶的氮、磷含量及叶片厚度都存在显著差异,毛竹叶的氮含量(30.23 g/kg)远高于石栎(20.98 g/kg)和山胡椒(9.69 g/kg),其中毛竹叶的分解速率最快(k=0.00592 d-1),山胡椒(0.00297 d-1)和石栎叶(0.00212 d-1)较慢.三种落叶叶袋间的大型底栖无脊椎动物包括各取食功能团的多度和生物量无显著差异,而4次采样间的差异很显著.大型底栖动物的取食功能团中,撕食者的数量比例最高(40.3%),生物量比例为41.6%,是落叶分解的重要功能类群.撕食者中,利用阔叶筑巢的鳞石蛾Lepi-dostoma数量最多,占全部底栖动物的14%,是该溪流中主要的撕食者类群.因此,由于毛竹叶具有氮、磷含量较高、叶形较窄,以及两年进行一次换叶的特点,当毛竹叶替代其他阔叶秋季落叶的树种成为源头溪流优势外来能源后,可能会改变源头溪流中的氮磷含量、溪流外来能源的量和滞留时间以及底栖动物群落结构.  相似文献   

4.
We assessed leaf breakdown of five native riparian species from Brazilian Cerrado (Myrcia guyanensis, Ocotea sp., Miconia chartacea, Protium brasiliense, and Protium heptaphyllum), incubated in single and mixed species packs in two headwater streams with different physico-chemical properties in the Espinhaço Mountain range (Southeastern Brazil). Leaves were placed in plastic litter bags (15 cm×20 cm, 10 mm mesh size) and the experiments were carried out during the dry seasons of 2003 and 2004. Leaf nitrogen and phosphorus contents were similar in all species, but polyphenolic contents were different (P<0.001). M. guyanensis showed higher polyphenolics content (8.48% g−1 dry mass) and leaf toughness. Individually, higher breakdown rates were found in M. guyanensis at Indaiá stream (k=0.0063±0.0005 d−1) and in Ocotea sp. at Garcia stream (k=0.0088±0.0006 d−1). However, P. brasiliense and P. heptaphyllum showed lower breakdown rates at Indaiá and Garcia streams (Indaiá: k=0.0020±0.0002 and 0.0019±0.0001 d−1; Garcia: k=0.0042±0.0001 and 0.0040±0.0002 d−1). Single and mixed breakdown processes of each species were not statistically different on both streams. However, all species showed higher breakdown rates at Garcia stream (P<0.01). These results suggest that leaf breakdown is not altered when litter benthic patches are composed by a mixture of species in the same proportions that they occur on riparian leaf falls.  相似文献   

5.
Inorganic fine sediments are easily carried into streams and rivers from disturbed land. These sediments can affect the stream biota, including detritivorous invertebrates (shredders) and impair ecosystem functions, such as leaf litter decomposition. We hypothesized that fine sediment (kaolin) deposited on leaves would reduce or suppress fungal development, reducing decomposition rates of leaves. Moreover, we predicted that shredders would act as ecosystem engineers by perturbing sediment deposition, reducing its impact on decomposition and fungi. We used a fully crossed experimental design of sediment addition (control, 400?mg?L?1) and shredders (none, Gammarus, Potamophylax) in laboratory aquaria. Leaf mass loss, suspended solids, microbial respiration, fungal biomass and spore production were measured. Sediment addition had no significant effects on the leaf mass remaining nor on shredders?? consumption rates. However, sediment slightly reduced fungal assemblage richness and the sporulation rate of three fungal species. The presence of shredders substantially increased the resuspension of fine sediments (>300%), resulting in higher suspended loads. However, the action of shredders did not have a significant effect on fungal biomass nor on leaf mass loss. Even if shredders did not enhance fungal colonisation, they affected the settlement of fine sediment, serving as allogenic engineers. Our study suggests that concentrations of fine sediment of 400?mg?L?1 with short exposure times (192?h) can have some effect on leaf decomposition.  相似文献   

6.
Oceanic freshwater communities tend to be species poor but rich in endemism due to their physical isolation. The ecology of endemic freshwater species is, however, poorly known. This study assessed allometric relationships, feeding preferences, growth and survival of larvae of the endemic stream insect Limnephilus atlanticus (Trichoptera, Limnephilidae) exposed to four leaf species differing in their physical and chemical characteristics (Ilex perado, Morella faya, Alnus glutinosa and Clethra arborea), in laboratory trials. All regression models used to estimate L. atlanticus dry mass from body and case dimensions and wet mass were significant, but wet mass and body length were the best predictors. Limnephilus atlanticus consumed all the four leaf species offered, but when given a choice, shredders significantly preferred A. glutinosa over the other three leaf species. Relative larval growth rate was significantly higher when L. atlanticus fed on A. glutinosa and I. perado leaves in comparison with the other leaf species. Survival of 95% was found when individuals fed on A. glutinosa leaves while it decreased to 75% when they fed on the other leaf species. Our results suggest that L. atlanticus can be an active shredder and that it exhibits the same basic patterns of food exploitation as its continental counterparts. The lack of an effect of shredders on litter decomposition in Azorean streams revealed by previous studies may thus be due to low densities or to a preference for food resources other than the low quality native litter species.  相似文献   

7.
8.
Flow pulses that alternately immerse and expose benthic habitats are widely recognized as key determinants of biodiversity and ecosystem functioning in rivers. Terrestrial leaf litter input, colonization, and breakdown are also key processes in river ecosystems, but little is known about the effects of alternating immersion and emersion on these processes. We used litterbags to examine breakdown, microbial activity, and colonization of Populus sp. leaves by invertebrates along a natural gradient in immersion and emersion (i.e., submergence and exposure to air) in a temporary river. Rates of leaf litter mass loss, microbial activity and colonization by invertebrates differed among litterbags that were permanently immersed, intermittently immersed and permanently emersed, and breakdown rate coefficients (k) decreased with increasing cumulative emersed duration (the total number of day of emersion during the experiment). In contrast, the frequency of emersed periods had no detectable effects on these variables. k was positively correlated with the density of invertebrate shredders in immersed litterbags, with microbial activity and shredder density in intermittent litterbags, and with microbial activity in emersed litterbags. These correlations suggest that the relative importance of microbial activity on k increases with emersed duration, due to the periodic elimination of aquatic shredders and the scarcity of terrestrial detritivores. The fact that leaf litter breakdown was detectable under permanently emersed conditions indicates that mechanisms other than shredding by invertebrates, such as leaching and photodegradation, are dominant in dry river habitats.  相似文献   

9.
Autumnal input of leaf litter is a pivotal energy source in most headwater streams. In temporary streams, however, water stress may lead to a seasonal shift in leaf abscission. Leaves accumulate at the surface of the dry streambed or in residual pools and are subject to physicochemical preconditioning before decomposition starts after flow recovery. In this study, we experimentally tested the effect of photodegradation on sunlit streambeds and anaerobic fermentation in anoxic pools on leaf decomposition during the subsequent flowing phase. To mimic field preconditioning, we exposed Populus tremula leaves to UV–VIS irradiation and wet-anoxic conditions in the laboratory. Subsequently, we quantified leaf mass loss of preconditioned leaves and the associated decomposer community in five low-order temporary streams using coarse and fine mesh litter bags. On average, mass loss after approximately 45 days was 4 and 7% lower when leaves were preconditioned by irradiation and anoxic conditions, respectively. We found a lower chemical quality and lower ergosterol content (a proxy for living fungal biomass) in leaves from the anoxic preconditioning, but no effects on macroinvertebrate assemblages were detected for any preconditioning treatment. Overall, results from this study suggest a reduced processing efficiency of organic matter in temporary streams due to preconditioning during intermittence of flow leading to reduced substrate quality and repressed decomposer activity. These preconditioning effects may become more relevant in the future given the expected worldwide increase in the geographical extent of intermittent flow as a consequence of global change.  相似文献   

10.
11.
Cross-ecosystem subsidies, such as terrestrial invertebrates and leaf litter falling into water as resources for aquatic communities, can vary across environmental gradients. We examined whether the effect of terrestrial subsidy inputs on benthic invertebrates was mediated by resident coastal cutthroat trout (Oncorhynchus clarki) in two representative streams. We experimentally manipulated the input rates (reduced, ambient) of terrestrial subsidies (terrestrial invertebrates and leaf litter) as well as the presence or absence of cutthroat trout in the two streams. The hypothesis that the reduction of terrestrial subsidies to the stream influences benthic invertebrate assemblages was supported by experimental results. The treatments of terrestrial subsidy reduction and cutthroat trout presence had a significant negative effect on benthic invertebrate community biomass and shredder biomass in East Creek with high natural terrestrial subsidy input and small amount of large wood in channel. In contrast, results from Spring Creek with low subsidy input and large amount of large wood in channel showed that only the terrestrial subsidy reduction significantly reduced the biomass of shredders. The effects of the terrestrial subsidy input and trout predation on benthic invertebrate communities varied between the two streams. Our results indicate that a subsidy effect on benthic communities can vary between nearby streams differing in canopy and habitats. This study, with the major finding of highly context-dependent effects of spatial subsidies, suggests that the interplay of resource subsidies and predators on invertebrate community assemblages can be site-specific and context-dependent on habitat features.  相似文献   

12.
Alien plant invasions of riparian zones can trigger bottom-up effects on freshwater ecosystems through changes in leaf litter supply. Riparian zones of ponds are often invaded by alien species, and although these habitats are common, the effect of invasive alien species on ponds has rarely been studied. We performed a leaf litter experiment in a pond and compared within- and between-species variation in the breakdown rates of three native species (Alnus glutinosa, Phragmites australis and Typha angustifolia) and two aggressive alien invaders of riparian zones (Fallopia japonica and Solidago canadensis). The litter of S. canadensis decomposed faster than the litter of the other plants; more than 50 % of the S. canadensis biomass decomposed within a week. This contradicts the home-field advantage hypothesis, and we argue that the quality rather than the origin of litter might be the key factor driving breakdown rates. We also reported considerable intra-specific variation; old leaves (collected in spring after a partial aerial breakdown on stems) decomposed two to seven times slower than senescent leaves (collected in autumn just after abscission). The continuous seasonal supply of leaves of different quality into freshwaters may be disrupted by terrestrial invasions, especially if an invader forms monoculture stands and produces a highly palatable litter, as is the case with S. canadensis. This may fundamentally alter the resource dynamics in the pond environment through a rapid depletion of litter mass before the next litterfall.  相似文献   

13.
14.
Agricultural practices affect the integrity of riparian areas of small streams. In this study we tested the hypothesis that the increase of agricultural activities influences negatively the functional conditions of the low order streams in the Atlantic forest of southern Brazil. Litter bags with leaves of Nectandra megapotamica (Spreng.) Mez were located in eight streams with different amounts of woody vegetation and agriculture land uses in their riparian zones. After 7, 15 and 30 days, the litter bags were removed for identification of associated invertebrates and determination of decomposition rate. Decomposition rates were negatively influenced by agriculture in the riparian zone while primary production was positively influenced. On the other hand, the decomposition mediated by microorganisms did not vary along the degradation gradient. The abundance of collectors increased in streams adjacent to agricultural land while the abundance of shredders was decreased. Our results showed that algae biomass and leaf decomposition were sensitive to the replacement of native vegetation by agricultural use. However, the trophic structure of invertebrates was moderately sensitive to agricultural land use.  相似文献   

15.
Freshwater communities on remote oceanic islands can be depauperate due to the influence of biogeographic processes that operate over a range of spatial scales, influencing the colonization of organisms, and events that shape local freshwater assemblages. The consequences of this paucity in organism diversity for the functioning of these ecosystems are, however, not well understood.Here, we examine the relative decomposition rate of leaf litter of native vs. exotic origin by aquatic macroinvertebrates and microbial communities in an isolated and depauperate oceanic environment.Bags containing a standard amount of leaf litter of each of 10 tree species (5 native and 5 non-native species) were deployed on two streams. Two types of bags differing in mesh size were used to allow or prevent the access of leaf litter to macroinvertebrates, respectively. Over a period of 28 days, mass loss of leaf litter was similar in the two bag types suggesting that macroinvertebrates had little influence on the break down of leaf litter in this system. In addition, there was no difference in mass loss of leaf litter of native and exotic origin. Decomposition rates were highly species-specific suggesting that decomposition rates were related to inhibitory substance specific of each leaf species. Our results add to the wider literature by showing that in depauperate and isolated ecosystems, and in contrast to temperate continental ecosystems, decomposition of plant litter by aquatic macroinvertebrates is negligible.  相似文献   

16.
Riparian invasion by non-native trees may lead to changes in the quality of leaf litter inputs into freshwater ecosystems. Different plant species may affect the community of decomposers and the rate of litter decay in different ways. We studied the microbial colonization and decomposition of leaf litter of the invasive to Lithuania Acer negundo and native Alnus glutinosa during 64-day litterbag experiments in the littoral zones of mesotrophic and eutrophic lakes. The decomposition of A. negundo leaf litter proceeded faster than that of A. glutinosa irrespective of differences in the trophic conditions of the lakes. The amount of terrestrial and cellulose-degrading fungi (during the initial period) and bacterial numbers (during the experiment) were higher on A. negundo leaves than on A. glutinosa in both lakes. Differences in the assemblages of aquatic fungi colonizing the leaves of both types might be one of the reasons causing variation in their decay. The trophic conditions of the lakes did not significantly determine the extent of differences in decomposition rates between the two leaf species, but affected the microbial decomposers. The sporulation rate and diversity of aquatic fungi, especially on A. glutinosa leaves, was higher in the mesotrophic lake than in the eutrophic lake, while heterotrophic bacteria were more numerous on the leaves in the eutrophic lake. Generally, differences in the colonization dynamics of heterotrophs and the faster decay of A. negundo litter than of A. glutinosa suggest that the replacement of native riparian species such as the dominating A. glutinosa by invasive A. negundo may cause changes of organic matter processing in the littoral zones of lakes.  相似文献   

17.
Nutrient enrichment and changes in riparian tree species composition affect many streams worldwide but their combined effects on decomposers and litter decomposition have been rarely assessed. In this study we assessed the effects of experimental nitrogen (N) enrichment of a small forest stream on the decomposition of three leaf litter species differing in initial chemical composition [alder (Alnus glutinosa), chestnut (Castanea sativa) and poplar (Populus nigra)], incubated individually and in 2-species mixtures during late spring-early summer. To better understand the effects of litter mixing on litter decomposition, component litter species were processed individually for remaining mass and fungal reproductive activity. Litter decomposition rates were high. Nitrogen enrichment significantly stimulated litter decomposition only for alder incubated individually. Differences among litter treatments were found only at the N enriched site where the nutrient rich alder litter decomposed faster than all other litter treatments; only at this site was there a significant relationship between litter decomposition and initial litter N concentration. Decomposition rates of all litter mixtures were lower than those expected from the decomposition rates of the component litter species incubated individually, at the N enriched and reference sites, suggesting antagonistic effects of litter mixing. Conidial production by aquatic hyphomycetes for each sampling date was not affected by nutrient enrichment, litter species or mixing. Aquatic hyphomycetes species richness for each sampling date was higher at the N enriched site than at the reference site and higher for alder litter than for chestnut and poplar, but no effect of mixing was found. Aquatic hyphomycetes communities were structured by litter identity and to a lesser extent by N enrichment, with no effect of mixing. This study suggests that nutrient enrichment and litter quality may not have such strong effects on decomposers and litter decomposition in warmer seasons contrary to what has been reported for autumn-winter. Changes in the composition of the riparian vegetation may have unpredictable effects on litter decomposition independently of streams trophic state.  相似文献   

18.
为了解河流大型底栖动物对环境压力的响应关系,以人类干扰程度不同的太湖流域和巢湖流域为研究区,系统调查区域内河流大型底栖动物,结合水体、沉积物理化数据及生境质量状况,运用空间分析和多元统计分析等方法,探讨了大型底栖动物多样性及典型物种对关键环境因素的响应规律.结果表明,太湖流域和巢湖流域的环境质量和大型底栖动物群落结构均差异较大,巢湖流域的生境质量优于太湖流域,巢湖流域平原区部分点位的水体营养盐(特别是氮浓度)高于太湖流域平原区.巢湖流域丘陵区的敏感型物种(主要为水生昆虫)密度远高于太湖流域丘陵区,太湖流域丘陵区的耐污型物种(寡毛纲)平均密度稍高于巢湖流域丘陵区,而巢湖流域平原区的寡毛纲霍甫水丝蚓(Limnodrilus hoffmeisteri)和苏氏尾鳃蚓(Branchiura sowerbyi)平均密度远高于太湖流域平原区.广义加性模型建立的响应关系曲线表明,栖境多样性和总氮浓度可以作为生物多样性的指示因子.铜锈环棱螺(Bellamya aeruginosa)、椭圆萝卜螺(Radix swinhoei)、河蚬(Corbicula fluminea)、霍甫水丝蚓、苏氏尾鳃蚓、黄色羽摇蚊(Chironomus flaviplumus)等特征物种与特定环境因子的响应关系显著,这些物种也可以作为环境监测的指示物种.底栖动物环境梯度的响应曲线能够定量地描述底栖动物群落对环境因子的响应关系,有利于深入了解水体水质、营养状态及生境质量与大型底栖动物群落结构的相关关系,进而预测不同人为干扰下大型底栖动物群落结构的变化趋势和演替过程.  相似文献   

19.
This study tested the hypothesis that the community composition of Chironomidae will change according to the duration of the exposure of plant leaves in a subtropical stream. In addition, we expected the chemical quality of the detritus to affect the association of Chironomidae with decaying plant materials. The chironomid colonisation of leaf litter from Campomanesia xanthocarpa and Sebastiania brasiliensis was assessed in a subtropical Atlantic forest stream. Litter bags containing leaves from these two species were incubated in the stream for 22 days. We identified 7245 invertebrates associated with the leaf detritus of both plant species (5110 were Chironomidae, 70.7% of the total). Thirteen genera of Chironomidae were identified, with Rheotanytarsus, Thienemanniella and Corynoneura the most abundant (94% of all Chironomidae collected). Chironomidae assemblages changed with the duration of incubation in the stream. The dissimilarity and the functional composition of the Chironomidae communities were related to the chemical composition of the detritus. The chemical components that best explained the composition of the fauna were tannins, the C:N ratio, calcium, and magnesium. However, the functional feeding groups were explained by the chemical variables organic matter and C:N. This study found that the exposure time of the detritus and therefore its level of degradation and chemical composition are important factors determining the characteristics of the Chironomidae assemblage in subtropical streams.  相似文献   

20.
Rainwater interception by leaf litter is an important part of forest hydrological processes. The objective of this study was to investigate the interception storage capacity (ISC) of woodland leaf litter for three leaf distribution patterns, one flow path, two flow paths, and three flow paths, manually simulated via one-by-one leaf connection in the top leaf litter layer. A random pattern served as the control. Three different slopes (0°, 5° and 25°, representing flat, gentle and steep slopes, respectively) and two contrasting leaf litters (needle-leaf litter, represented by P. massoniana leaves, and broad-leaf litter, represented by C. camphora leaves) with a biomass of 0.5 kg/m2 per unit area were applied, at a rainfall intensity of 50 mm/h. Results suggested that leaf distribution pattern greatly impacts litter drainage and hence affects leaf litter ISC. The delaying capacity of litter drainage initiation and ISC of broad-leaf litter were higher than those of needle-leaf litter under the same slope conditions. The maximum ISC (Cmax) and minimum ISC (Cmin) of leaf litter at flat and gentle slopes were higher than those at steep slope. Cmin of the broad-leaf litter was two times higher than that of needle-leaf litter on average. When raindrops reached the litter layer, some were temporarily intercepted by the top litter layer while others infiltrated leaf litter sublayer along leaf edges, and in the process, some rainwater flowed through litter layer and contributed to lateral litter drainage along the potential flow path formed by leaves. The lateral litter drainage of broad-leaf litter was higher than that of needle-leaf litter, and the partitioning of rainwater into lateral litter drainage increased with increases in slope. The difference in leaf litter Cmax among different slopes and leaf shapes decreased with flow path increasing. Therefore, leaf distribution pattern notably impact leaf litter ISC, which is similar to leaf shape and slope impacts. On inclined slopes, avoiding leaf accumulation to form flow path is helpful for improving ISC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号