首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. A new method is presented for the direct inversion of seismic refraction data in dipping planar structure. Three recording geometries, each consisting of two common-shot profiles, are considered: reversed, split, and roll-along profiles. Inversion is achieved via slant stacking the common-shot wavefield to obtain a delay time–slowness (tau– p ) wavefield. The tau– p curves from two shotpoints describing the critical raypath of refracted and post-critically reflected arrivals are automatically picked using coherency measurements and the two curves are jointly used to calculate velocity and dip of isovelocity lines iteratively, thereby obtaining the final two-dimensional velocity model.
This procedure has been successfully applied to synthetic seismograms calculated for a dipping structure and to field data from central California. The results indicate that direct inversion of closely-spaced refraction/wide-aperture reflection data can practically be achieved in laterally inhomogeneous structures.  相似文献   

2.
Summary . In this paper the accuracy of velocity-depth profiles derived by matching WKBJ seismograms to observations is quantitatively evaluated. Seismograms computed with the WKBJ method are generally quite reliable but possess predictable, systematic inaccuracies in the presence of strong velocity gradients. The effects of these inaccuracies on models derived through WKBJ waveform inversion are studied, using reflectivity seismograms as 'data'. The velocity structure used is an oceanic lithosphere model that contains several transition regions separated by relatively homogeneous layers, producing partially-reflected reverberations in the reflectivity synthetics that are absent from the WKBJ seismograms. The inversion incorporates the 'jumping' strategy to solve for the smoothest models consistent with the data. We find these solutions to be independent of the starting model and to have a stable basic structure that agrees well with the correct model. The differences, everywhere less than a seismic wavelength, depend on the frequency content of the seismograms. Reverberations in the reflectivity seismograms that are well separated from WKBJ arrivals are treated as 'noise' in the inversion.  相似文献   

3.
Summary. In order to examine the development of the oceanic crust in the neighbourhood of a slowly spreading ridge, a seismic refraction experiment was carried out at 59° 30'N on the Reykjanes Ridge. Three 120 km long overlapped split profiles were shot parallel to the trend of the ridge, on the eastern flank, and recorded on up to five recording sonobuoys. The profiles were at distances of 0, 30 and 90km from the ridge axis, corresponding to approximate crustal ages of 0, 3 and 9 Myr. Data from the main profiles were supplemented by using a large chamber air gun during recovery of the buoys.
The analysis of the data combined standard travel-time interpretation, the 'tau' method of systematic travel-time inversion and detailed amplitude modelling using the Reflectivity Method to calculate synthetic seismograms. Detailed velocity-depth models were constructed for each of the profiles.
There is no indication of a significant magma chamber at the ridge crest, although a slight velocity inversion in layer 3 suggests a zone of elevated temperature. Away from the crest there was a slight positive velocity gradient in layer 3. Layer 2 was most effectively modelled by a region of varying velocity gradients, which thinned with age and the transition to layer 3 is marked by a sharp change in velocity gradient. The transition to mantle velocities is also best modelled by a high velocity gradient rather than an interface.
Although some lateral variation in properties is apparent along the profiles, the lateral velocity gradients were sufficiently weak to allow an effective analysis in terms of laterally uniform models.  相似文献   

4.
A seismogram that is several times the length of the source-receiver wavelet is windowed into two parts—these may overlap—to obtain two seismograms with approximately the same source function but different Green's functions. A similarly windowed synthetic seismogram gives two corresponding synthetic seismograms. The spectral product of the window 1 data with the window 2 synthetic is equal to the spectral product of the window 1 synthetic with the window 2 data only if the correct earth model is used to compute the synthetic. This partition principle is applied to well-log sonic waveform data from Ocean Drilling Project hole 806B, a slow formation, and used there to estimate Poisson's ratio from a single seismogram whose transmitter and receiver functions are unknown. A multichannel extension of the algorithm gives even better results. The effective borehole radius R b, was included in the inversion procedure, because of waveform sensitivity to R b. Inversion results for R b agreed with the sonic caliper, but not the mechanical caliper; thus if R b is not included in the inversion its value should be taken from the sonic caliper.  相似文献   

5.
A method for calculating synthetic seismograms in laterally varying media   总被引:2,自引:0,他引:2  
Summary An effective algorithm for computing synthetic seismograms in laterally inhomogeneous media has been developed. The method, based on zero-order asymptotic ray theory, is primarily intended for use in refraction and reflection studies and provides an economical means of seismic modelling.
A given smoothed velocity-depth-distance model is divided into small squares with constant seismic parameters and first-order interfaces are represented by an arbitrary number of dipping linear segments. The computation of ray propagation and amplitudes through such a model does not involve complicated analytic expressions and therefore minimizes computer time.
Amplitudes are determined by geometrical spreading of spherical wave-fronts and energy partitioning at interfaces. Synthetic seismograms calculated for laterally homogeneous models are in good agreement with those obtained by the Reflectivity Method.  相似文献   

6.
The relation between p-Δcurves for surface and deep focus sources is investigated in order to construct synthetic body wave seismograms for non-zero focal depths by the quantized ray theory algorithm. The transformation of a surface focus p-Δ curve into a deep focus p-Δ curve is denned in terms of that curve which corresponds to surface focus rays reflected from the depth at which the deep focus is located. By analogy with the geometry of the surface focus formulation, paths of integration to obtain absolute travel-time and velocity-depth curves can be denned in the p-Δ plane. Explicit inversion from deep focus data is possible only when the velocity-depth structure above the depth of focus is known. Through a comparison of short period quantized ray theory synthetic seismograms with similar Cagniard-de Hoop computations, it is shown that quantized ray theory can be used for accurate predictions of body wave amplitude behaviour corresponding to a wide range of focal depths.  相似文献   

7.
We explore the possibility of determining the actual fault plane of an earthquake from the inversion of near-source displacement seismograms of one station when a finite-dimension source is used instead of a point source model and when the complete displacement is taken into account, including near-field waves. Tests on synthetic seismograms and real data recorded at local distances show that this is possible even with a single, three-component station. A single accelerogram available for the Erzincan, Turkey, 1992 March 13, M s = 6.8 earthquake is inverted and the solution found is compatible with other seismological studies and with the mechanism expected for the North Anatolian Fault.  相似文献   

8.
A new algorithm is presented for the integrated 2-D inversion of seismic traveltime and gravity data. The algorithm adopts the 'maximum likelihood' regularization scheme. We construct a 'probability density function' which includes three kinds of information: information derived from gravity measurements; information derived from the seismic traveltime inversion procedure applied to the model; and information on the physical correlation among the density and the velocity parameters. We assume a linear relation between density and velocity, which can be node-dependent; that is, we can choose different relationships for different parts of the velocity–density grid. In addition, our procedure allows us to consider a covariance matrix related to the error propagation in linking density to velocity. We use seismic data to estimate starting velocity values and the position of boundary nodes. Subsequently, the sequential integrated inversion (SII) optimizes the layer velocities and densities for our models. The procedure is applicable, as an additional step, to any type of seismic tomographic inversion.
We illustrate the method by comparing the velocity models recovered from a standard seismic traveltime inversion with those retrieved using our algorithm. The inversion of synthetic data calculated for a 2-D isotropic, laterally inhomogeneous model shows the stability and accuracy of this procedure, demonstrates the improvements to the recovery of true velocity anomalies, and proves that this technique can efficiently overcome some of the limitations of both gravity and seismic traveltime inversions, when they are used independently.
An interpretation of field data from the 1994 Vesuvius test experiment is also presented. At depths down to 4.5 km, the model retrieved after a SII shows a more detailed structure than the model obtained from an interpretation of seismic traveltime only, and yields additional information for a further study of the area.  相似文献   

9.
A tomographic inversion technique that inverts traveltimes to obtain a model of the subsurface in terms of velocities and interfaces is presented. It uses a combination of refraction, wide-angle reflection and normal-incidence data, it simultaneously inverts for velocities and interface depths, and it is able to quantify the errors and trade-offs in the final model. The technique uses an iterative linearized approach to the non-linear traveltime inversion problem. The subsurface is represented as a set of layers separated by interfaces, across which the velocity may be discontinuous. Within each layer the velocity varies in two dimensions and has a continuous first derivative. Rays are traced in this medium using a technique based on ray perturbation theory, and two-point ray tracing is avoided by interpolating the traveltimes to the receivers from a roughly equidistant fan of rays. The calculated traveltimes are inverted by simultaneously minimizing the misfit between the data and calculated traveltimes, and the roughness of the model. This 'smoothing regularization' stabilizes the solution of the inverse problem. In practice, the first iterations are performed with a high level of smoothing. As the inversion proceeds, the level of smoothing is gradually reduced until the traveltime residual is at the estimated level of noise in the data. At this point, a minimum-feature solution is obtained, which should contain only those features discernible over the noise.
The technique is tested on a synthetic data set, demonstrating its accuracy and stability and also illustrating the desirability of including a large number of different ray types in an inversion.  相似文献   

10.
Synthetic seismograms are shown and discussed for the case of the receiver within the medium. Most of the discussion is on the reflectivity method with the receiver within the reflectivity zone, but results using the ray method are shown for comparison. Such synthetic seismograms can be used to interpret data from Oblique Seismic Experiments where shots generated on the surface up to large ranges are recorded in crustal boreholes.  相似文献   

11.
Summary. Seismic investigations using shear-wave and converted wave techniques show that very often reflected PS - and SS -waves have anomalous polarizations ( accessory components ). This phenomenon cannot be explained in terms of isotropic models with dipping boundaries. Computations of synthetic seismograms of reflected PS - and SS -waves were made for different models of transversely isotropic media with dipping anisotropic symmetry axes not normal to the boundaries. Synthetic seismograms were computed by ray techniques using an optimization algorithm to construct all rays arriving at a given receiver. These computations indicate that accessory components arise when the medium above the boundary is anisotropic, where they are caused by the constructive interference of qSV - and qSH -waves. If a low-velocity layer is present, displacement vectors of both waves have horizontal projections which are approximately orthogonal. The algorithm for wave separation is presented and some results of its use are given.  相似文献   

12.
Summary. An algorithm for the computation of travel times, ray amplitudes and ray synthetic seismograms in 3-D laterally inhomogeneous media composed of isotropic and anisotropic layers is described. All 21 independent elastic parameters may vary within the anisotropic layers. Rays and travel times are evaluated by numerical solution of the ray tracing equations. Ray amplitudes are determined by evaluating reflection/ transmission coefficients and the geometrical spreading along individual rays. The geometrical spreading is computed approximately by numerical measurement of the cross-sectional area of the ray tube formed by three neighbouring rays. A similar approximate procedure is used for the determination of the coefficients of the paraxial ray approximation. The ray paraxial approximation makes computation of synthetic seismograms on the surface of the model very efficient. Examples of ray synthetic seismograms computed with a program package based on the described algorithm are presented.  相似文献   

13.
Summary. The Radon transform or slant stack is becoming a widely used technique for analysing high-quality reflection and refraction data. The transform normally used is applicable to data from a line source in a plane model, that is, one Cartesian coordinate. The theoretical basis for the Radon transform pair for one Cartesian coordinate has appeared in the seismological literature. For a point source in plane or spherical geometry, or a line source in cylindrical geometry only the Radon transform for the direct problem (computation of synthetic seismograms) has been published. To analyse data an approximate inverse transform has been used. In this research note, the exact forms of the generalized Radon transform pairs are completed for a point source in plane or spherical geometry, and for a line source in cylindrical geometry. The differences will be important if the waveforms are being interpreted, and are most significant for near-vertical reflections—the type of data most commonly slant stacked.  相似文献   

14.
We have been developing an accurate and efficient numerical scheme, which uses the finite-difference method (FDM) in spherical coordinates, for the computation of global seismic wave propagation through laterally heterogeneous realistic Earth models. In the field of global seismology, traditional axisymmetric modeling has been used widely as an efficient approach since it can solve the 3-D elastodynamic equation in spherical coordinates on a 2-D cross-section of the Earth, assuming structures to be invariant with respect to the axis through the seismic source. However, it has the severe disadvantages that asymmetric structures about the axis cannot be incorporated and the source mechanisms with arbitrary shear dislocation have not been attempted for a long time. Our scheme is based on the framework of axisymmetric modeling but has been extended to treat asymmetric structures, arbitrary moment-tensor point sources, anelastic attenuation, and the Earth center which is a singularity of wave equations in spherical coordinates. All these types of schemes which solve 3-D wavefields on a 2-D model cross-section are classified as 2.5-D modeling, so we have named our scheme the spherical 2.5-D FDM. In this study, we compare synthetic seismograms calculated using our FDM scheme with three-component observed long-period seismograms including data from stations newly installed in Antarctica in conjunction with the International Polar Year (IPY) 2007–2008. Seismic data from inland Antarctica are expected to reveal images of the Earth's deep interior with enhanced resolution because of the high signal-to-noise ratio and wide extent of this region, in addition to the rarity of sampling paths along the rotation axis of the Earth. We calculate synthetic seismograms through the preliminary reference earth model (PREM) including attenuation using a moment-tensor point source for the November 9, 2009 Fiji earthquake. Our results show quite good agreement between synthetic and observed seismograms, which indicates the accuracy of observations in the Antarctica, as well as the feasibility of the spherical 2.5-D modeling scheme.  相似文献   

15.
On the resolving power of tomographic images in the Aegean area   总被引:2,自引:0,他引:2  
b
The imaging of upper mantle heterogeneity by seismic tomography is strongly limited by the uneven global distribution both of seismic recording stations and earthquake sources. This can result in a loss of resolution and significance in the final image, particularly when a sparse data set contains few ray paths which intersect at sufficiently high angles in the volume of interest. In order to investigate the theoretical resolving power of a previously published tomographic image of the Aegean area, synthetic tests of the inversion procedure using a ray-path matrix obtained in this previous study for local and teleseismic P -waves were carried out. The aim was to examine the extent to which the shape of a synthetic lithospheric slab penetrating to different depths is inherently distorted by the tomographic imaging procedure, and to compare the synthetic tomographic images with the results from the actual inversion. The distortion is found to take the form of an artificial stretching of the lithospheric slab. The maximum 'stretching factor', as indicated by the downdip displacement of the peak amplitude of the synthetic high-velocity anomaly, is found to be a factor of 2 or so, though the distortion is usually less than this. The peak amplitude of the tomographic image of a lithospheric slab is found from the inversion of traveltime data to be at depths at or below 400 km. This indicates that the high-velocity lithospheric slab in the Aegean penetrates deeper than the Benioff zone seismicity of about 200 km. However, no constraints of the maximum depth of penetration could be established with the data set used in the present work.  相似文献   

16.
Seismic imaging of the laterally varying D" region beneath the Cocos Plate   总被引:1,自引:0,他引:1  
We use an axisymmetric, spherical Earth finite difference algorithm to model SH -wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D" reflector 264 km above the core–mantle boundary with laterally varying S -wave velocity increases of 0.9–2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D" reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S -wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S -wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D" volumetric heterogeneity and D" discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D" structure.  相似文献   

17.
Given a station and a suite of clustered weak event records whose focal mechanisms are known, empirical Green's tensor spatial derivatives (EGTD) can be calculated, almost free of the source effects. The inversion method solves an overdetermined system of linear algebraic equations in the frequency domain, and a FFT provides the time histories. They represent a least-squares averaged representation of the path between the station and the entire focal zone, including multiple P and S phases, coda waves, etc. The method can be used for modelling earthquakes whose focal mechanisms are quite different from the weak events employed. This is proved here using both synthetic seismograms and earthquake swarm records with variable focal mechanisms. It is expected that the EGTD method can improve strong motion syntheses and source inversions.  相似文献   

18.
We report results from the Seismic Wide-Angle and Broadband Survey carried out over the Mid North Sea High. This paper focuses on integrating the information from a conventional deep multichannel reflection profile and a coincident wide-angle profile obtained by recording the same shots on a set of ocean bottom hydrophones (OBH). To achieve this integration, a new traveltime inversion scheme was developed (reported elsewhere) that was used to invert traveltime information from both the wide-angle OBH records and the reflection profile simultaneously. Results from the inversion were evaluated by producing synthetic seismograms from the final inversion model and comparing them with the observed wide-angle data, and an excellent match was obtained. It was possible to fine-tune velocities in less well-resolved parts of the model by considering the critical distance for the Moho reflection. The seismic velocity model was checked for compatibility with the gravity field, and used to migrate and depth-convert the reflection profile. The unreflective upper crust is characterized by a high velocity gradient, whilst the highly reflective lower crust is associated with a low velocity gradient. At the base of the crust there are several subhorizontal reflectors, a few kilometres apart in depth, and correlatable laterally for several tens of kilometres. These reflectors are interpreted as representing a strike section through northward-dipping reflectors at the base of the crust, identified on orthogonal profiles by Freeman et al. (1988) as being slivers of subducted and imbricated oceanic crust, relics of the mid-Palaeozoic Iapetus Ocean.  相似文献   

19.
Summary. The Lanczos method of separating exponentials is applied to the Fourier transform of seismograms in order to separate the various modes that contribute to the given portion of the seismograms. Phase velocities and amplitudes are obtained as functions of the frequency. When applying the method to artificial seismograms, which are built as an exact superposition of a number of modes, the separation is very accurate. The method was also applied to the surface-wave portion of numerical seismograms for a vertical point force in a layered medium. The phase velocity and amplitude of the fundamental mode are obtained. These functions were taken as the first guess in the Backus—Gilbert generalized inverse procedure and the process converged very rapidly. When a perturbation of the phases and amplitudes is taken as the first guess the process converges to the true model when enough data are available.  相似文献   

20.
Summary. High-frequency reflection and refraction seismograms for laterally variable multi-layered elastic media are computed by using the frequency domain elastic Kirchhoff–Helmholtz (KH) theory of Frazer and Sen. Both source and receiver wavefields are expanded in series of generalized rays and then elastic (KH) theory is applied to determine the coupling between each source ray and each receiver ray at each interface. The motion at the receiver is given as a series of integrals, one for each generalized ray. We use geometrical optics and plane wave reflection and transmission coefficients for rapid evaluation of the integrand. When the source or the receiver ray field has caustics on the surface of integration geometrical ray theory breaks down and this gives rise to singularities in the KH integrand. We repair this using methods suggested by Frazer and Sen.
Examples of reflection seismograms for 2-D structures computed by elastic KH theory are shown. Those for a vertical fault scarp structure are compared with the seismograms obtained by physical modelling. Then OBS data obtained from the mid-America trench offshore Guatemala area are analysed by computing KH synthetics for a velocity model that has been proposed for that area. Our analysis indicates the existence of a small low-velocity zone off the trench axis.
No head wave arrivals are obtained in our KH synthetics since we do not consider multiple interactions of a ray with an interface. The nearly discontinuous behaviour of elastic R/T coefficients near the critical angle causes small spurious phases which arrive later than the correct arrivals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号