首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sidereal rotation rate of the high-latitude solar regions is examined using long-lived photospheric polar faculae. The observations were carried out with the photoheliograph of Kislovodsk Mountain Station of the Pulkovo Observatory from 1982 to 1986. The following facts have been established: (a) There is a differential rotation of the polar faculae close to the maximum of solar activity, while the amount of latitude gradient of solar rotation decreases towards the sunspot minimum; (b) small differences of rotation in the northern and southern hemispheres of the Sun are observed; (c) some deviations of differential rotation curves constructed for each Carrington rotation from the mean curve of differential rotation are revealed. The total amplitude of the maximum positive and negative excesses is about 40–50 m s–1. The positive surplus velocities of solar rotation (the amplitude of which is about 20–25 m s–1) move in the form of a wave from heliographic latitudes 40° with a velocity of 1.6 m s–1. The latitude width of this flow is B 15°. This wave of abnormally high velocity starts in the year of minimum solar activity and reaches the pole 11 years later. The picture is symmetrical relative to the equator.  相似文献   

2.
Axel Koch 《Solar physics》1984,93(1):53-72
The rotational velocity of the Sun is determined by sunspot tracings and by spectroscopic measurements of the photospheric plasma using the non-Zeeman-split line Fe i 5576 and absolute iodine reference. Stationary line shifts as limb-effect and longperiodical shifts introduced by supergranulation are discussed. The dependence on solar activity as Ca+ emissivity and magnetic fields is investigated including line asymmetries. The results are: (a) The non active photospheric regions rotate with 1995 ± 30 m s-1. Solar active regions yield a 60 m s-1 higher value. (b) In quiet regions the absolute limb shift varies between 170 m s-1 at the line core and 310 m s-1 at I/I cont 0.8 (C-shape); thus the limb shift is mainly due to entire line shifts. (c) In solar active regions (close to spots) asymmetries are widely reduced in line cores; this effect cannot be associated with a variation of the limb effect due to a large scatter of Doppler shifts near spots. (d) A reduced limb shift of 50 m s-1 is found in network boundaries and is mainly due to a small scale downflow. (e) Observations with a smaller influence of stray light yield symmetric profiles in umbrae. (f) Differences between umbral rotation rates from tracer and spectroscopic measurements do not exceed 20 m s-1, when considering straylight. The rotational velocity from umbrae exceeds that from the photosphere by 30–60 m s-1. Some individual spots yield nearly the same rotation rate as the photosphere.  相似文献   

3.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

4.
A variety of temporal filters are tested on artificial data with 60 and 75 s sampling intervals to determine their accuracy in separating the nearly-steady photospheric flows from the p-mode oscillations in Doppler velocity data. Longer temporal averages are better at reducing the residual signal due to p-modes but they introduce additional errors from the rotation of the supergranule pattern across the solar disk. Unweighted filters (boxcar averages) leave residual r.m.s. errors of about 6 m s–1 from the p-modes after 60 min of averaging. Weighted filters, with nearly Gaussian shapes, leave similar residual errors after only 20 min of averaging and introduce smaller errors from the rotation of the supergranule pattern. The best filters found are weighted filters that use data separated by 150 or 120 s so that the p-modes are sampled at opposite phases. These filters achieve an optimum error level after about 20 min, with the r.m.s. errors due to the p-mode oscillations and the rotation of the supergranules both at a level of only 1.5 m s–1.  相似文献   

5.
A method for analysing line profiles by means of a transform using Bessel functions is described. This yields the stellar rotational velocityv sini, to an accuracy of about ±1 km s–1 for rotational velocities greater than about 5 km s–1, provided that rotation is the major source of line broadening. The theory of the method is a special case of a general theory of linear transforms in data analysis, which is outlined in an appendix.  相似文献   

6.
Horizontal proper motions of penumbral structure and umbral dots have been measured from a 17-min-long time series of sunspot images by numerical techniques. In the penumbra, inflows are seen to occur predominantly in the inner region, with an average velocity of 290 m s–1. Penumbral outflows take place mostly in the outer part, where they reach velocities as high as 1.5 km s–1, with an average velocity of 500 m s–1. In the umbra, proper motions of 28 bright dots have been measured with an accuracy better than 50 m s–1. The mean velocity of the umbral dots is 210 m s–1. Most of the umbral dots display the well-known inward motion away from the peripheral umbra.  相似文献   

7.
Strong absorption satellite lines of CaI 6572 were found on spectrograms taken on three successive days just after the fourth contact of the 1971–72 eclipse of Zeta Aurigae. The radial velocities of the satellite lines are –88 km s–1, –74 km s–1, and –180 km–1, respectively, relative to the K-type primary star (K4 Ib). These absorptions should be due to a circumstellar cloud in which the column density of neutral calcium atoms is 1×1017 cm–2 and the turbulent velocities come to 20–50 km s–1. It is suggested that the cloud may be formed by the rocket-effect of the Lyman quanta of the B-type component (B6 V). We estimate the density in the cloud to be 2×1011 atoms cm–3 fors=10R K and 2×1010 atoms cm–3 fors=102 R K, wheres denotes the distance of the cloud from the K star andR K the K star's radius. The mass loss rate of the K-type component is also estimated to be about 10–7 M yr–1, assuming that the expansion of the K star occurs isotropically.  相似文献   

8.
Daily observations of Doppler line shifts made with very low spatial resolution (3) with the Stanford magnetograph have been used to study the equatorial rotation rate, limb effect on the disk, and the mean meridonial circulation. The equatorial rotation rate was found to be approximately constant over the interval May 1976–January 1977 and to have the value 2.82 rad s–1 (1.96 km s–1). This average compares favorably with the results of Howard (1977) of 2.83 rad s–1 for the same time period. The RMS deviation of the daily measurements about the mean value was 1% of the rate (20 m s–1), much smaller than the fluctuations reported by Howard and Harvey (1970) of several per cent. These 1% fluctuations are uncorrelated from day-to-day and may be due to instrumental problems. The limb effect on the disk was studied in equatorial scans (after suppressing solar rotation). A redshift at the center of the disk relative to a position 0.60R from the center of 30 m s–1 was found for the line Fe i 5250 Å. Central meridian scans were used (after correcting for the limb effect defined in the equatorial scans) to search for the component of mean meridonial circulation symmetric across the equator. A signal is found consistent with a polewards flow of 20 m s–1 approximately constant over the latitude range 10–50°. Models of the solar differential rotation driven by an axisymmetric meridonial circulation and an anisotropic eddy viscosity (Kippenhahn, 1963; Cocke, 1967; Köhler, 1970) predict an equatorwards flow at the surface. However, giant cell convection models (Gilman, 1972, 1976, 1977) predict a mean polewards flow (at the surface). The poleward-directed meridonial flow is created as a by-product of the giant cell convection and tends to limit the differential rotation. The observation of a poleward-directed meridonial circulation lends strong support to the giant cell models over the anisotropic eddy viscosity models.Now at Kitt Peak National Observatory, Tucson, Ariz., U.S.A.  相似文献   

9.
Grains ejected from stars at velocities of 107 cm s–1 and/or grains accelerated by the pressure of starlight in the intercloud medium to velocities in the range 2×106–107 cm s–1 are slowed to velocities of about 2×105 cm s–1 in a typical interstellar cloud. The interaction of fast grains with gas atoms as they are slowed in clouds could provide (a) the dominant heat source for interstellar clouds; (b) sites for molecule formation; and (c) a mechanism of providing a pressure balance between clouds and the intercloud medium.Paper presented at the Symposium on Solid State Astrophysics, held at the University College, Cardiff, Wales, between 9–12 July, 1974.  相似文献   

10.
Maximum possible acceleration due to out-gassing from cometary nuclei is calculated for H2O and CO(N2) molecules. It is found that the maximum excess velocity at great distance is 0.18 km s–1 so that excess velocities less than this value are compatible with the non-gravitational acceleration due to non-symmetric out-gassing. On the other hand, Comet 1975q and comet 1955V have excess velocities 0.81 and 0.80 km s–1 respectively. These comets may be regarded as the candidates for possible interstellar comets.  相似文献   

11.
The coherent 5-min photospheric pressure oscillations with spherical harmonic degrees in the range 100 <l< 1000 were directly imaged over the photosphere with the monochromatic solar telescope FPSS at Meudon Observatory. Movie films were obtained with images spatially filtered to select sizes of increasing wave numbers (or l). Areas with ephemeral concentrations of coherent waves evolve in shape and may move horizontally with velocities of several tenths of km s–1. When a large number of waves are interacting, the maximum vertical velocity V max of the pulsation reaches around 1000 m s–1, irrespective of the size. Extrapolation to the ideal case of a single isolated wave gives V max proportional to size. For the areas of the smallest scale measured (l = 1000), when about 100 waves are interacting, V max is found to be 260 + 25 m s–1 at an altitude of 210 km above the reference level 5000 = 1 and increases vertically with a scale height of 750 ± 400 km.  相似文献   

12.
We report measurements of the sunspot rotation rate at high sunspot latitutdes for the years 1966–1968. Ten spots at ¦latitude¦ 28 deg were found in our Mees Solar Observatory H patrol records for this period that are suitable for such a study. On the average we find a sidereal rotation rate of 13.70 ± 0.07 deg day-1 at 31.05 ± 0.01 deg. This result is essentially the same as that obtained by Tang (1980) for the succeeding solar cycle, and significantly larger than Newton and Nunn's (1951) results for the 1934–1944 cycle. Taken together, the full set of measurements in this latitude regime yield a rotation rate in excellent agreement with the result =14°.377–2°.77 sin2, derived by Newton and Nunn from recurrent spots predominatly at lower latitudes throughout the six cycles from 1878–1944.Summer Research Assistant.  相似文献   

13.
The heliographic positions of more than 100 sunspots were accurately measured several times a day from 1974 until 1979 by means of the computer-controlled tracing method described by Schröter and Wöhl (1975). A striking degree of constancy of the solar rotation rate (about 0.15% or 3 m s–1) is found, when east-west proper motion components of each individual stable sunspot is considered. However, large differences of the rotation rate are observed (up to 7% or 130 m s–1) when comparing different sunspots. We found no significant correlation of these fluctuations with characteristics of the sunspots (age, evolution, etc.).Mitteilungen aus dem Kiepenheuer-Institut Nr. 191.  相似文献   

14.
Kupke  Renate  Labonte  B.J.  Mickey  D.L. 《Solar physics》2000,191(1):97-128
Time series of 2-dimensional spectro-polarmetric data were obtained with the intent of studying the temporal behavior of velocity, magnetic flux, and characteristics of the Stokes V profile in a small region of a larger sunspot. Full Stokes profiles in I, Q, U, and V were obtained. Velocity oscillations were found at frequencies of 3.3 mHz in each of the profiles. Acoustic power maps indicate that locations of highest power correspond to areas in which the polarization signal was greatest, therefore no conclusion about the type of wave mode participating in the oscillations can be made. Velocity amplitudes were I: 71 m s–1, Q: 47 m s–1, U: 65 m s–1 and V: 86 m s–1. Oscillatory behavior was also detected in longitudinal field strength, with an r.m.s. amplitude of 22 G, at 2.6 and 3.3 mHz. The power was localized at the umbral/penumbral boundary. A phase analysis indicates a –130° phase difference with Stokes V velocity oscillations at 3.3 mHz and a 75° difference at 2.6 mHz. Results are consistent with magnetic field lines swaying in response to a p-mode driver. No oscillatory behavior was seen in Stokes V asymmetry or amplitude splitting.  相似文献   

15.
The motion of dust structures in the circumnuclear region of comet Hale–Bopp is studied. About 270 envelope images were obtained with the AZT-8 reflector (D = 0.7 m, F = 28 m) and the Filin-3 image intensifier. We carried out our observations at the observational station of the Astronomical Observatory of Shevchenko Kiev State University in the village of Lesniki (near Kiev). The recording from the image-intensifier screen was made on Foto-100 film during 23 nights from March 24 to May 10, 1997. The circumnuclear region was imaged both in white light (without filters) and with IHW CO+ (ef = 426 nm), C3 (ef = 496 nm), C2 (ef = 514 nm), and RC (red continuum, ef = 684 nm) narrow-band interference filters. Based on our measurements of the radial expansion of dust structures, we determined the velocities, 0.61–1.99 km s–1; accelerations, from –18.3 × 10–3 to 4.0 × 10–3 m s–2; and rotation period of the cometary nucleus, 111.41h ± 0.05h.  相似文献   

16.
The directions and velocities of meridional plasma motions are investigated using Doppler shifts of the magnetically non-split line Fe 557.6 nm. Possible drifts of the spectrograph were controlled by measuring nearly iodine lines from a laboratory source. The scattered light was kept low by using the Capri Coudé refractor mainly around local noon.There is a general scatter of about ±20 to ±50 m s–1 in the yearly mean results. The scatter is up to –200 m s–1 for the year 1985. The results are compared with published data. Although some systematic meridional plasma motions could be detected from the average of the meridional flows within the whole observing period 1982 until 1986, the final analysis suggests, that all meridional motions averaged over half a solar cycle are below ±10 m s–1.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.This paper has also been presented at the IAU Colloquium No. 121Inside the Sun andAstronomy and Astrophysics 229, 224 (1990).  相似文献   

17.
From high precision computer controlled tracings of bright Ca+-mottles we investigated differential rotation, meridional and random motions of these chromospheric fine structures. The equatorial angular velocity of the Ca+-mottles agrees well with that of sunspots (14°.50 per day, sidereal) and is 5 % higher than for the photosphere. The slowing down with increasing latitude is larger than for sunspots. Hence in higher latitudes Ca+-mottles rotate as fast as the photospheric plasma. A systematic meridional motion of about 0.1 km s–1 for latitudes around 10° was found. The Ca+-mottles show horizontal random motions due to the supergranular flow pattern with an rms velocity of about 0.15 km s–1. We finally investigated the correctness of the solar rotation elements i and derived by Carrington (1863).  相似文献   

18.
Andersen  B. N. 《Solar physics》1985,98(1):173-176
The data published by Pierce and LoPresto (1984) are corrected for straylight. This correction increases the observed equatorial rotation velocity from 1977 to 2004 m s –1. The correction has an uncertainty of approximately 10 m s–1 because the accurate form of the straylight function is not available.  相似文献   

19.
Previous observations of spatially-resolved vertical velocity variations in ten lines of Fe i spanning the height range 0 h 1000 km are re-analyzed using velocity weighting functions. The amplitudes and scale heights of granular and oscillatory velocities are determined, as well as those of the remaining unresolved velocities. I find that the optimal representation of the amplitude of the outward-decreasing granular velocities is an exponentially decreasing function of height, with a scale height of 150 km and a velocity at zero height of 1.27 km s–1. The optimal representation of the same quantities for oscillatory velocities is an exponential increase with height, with a scale height of 1100 km and a velocity at zero height of 0.35 km s–1. The remaining unresolved velocities decrease with height, with a scale height of 380 km and a velocity at zero height of 2.3 km s–1.  相似文献   

20.
We have analyzed the effects that differential rotation and a hypothetical meridional flow would have on the evolution of the Sun's mean line-of-sight magnetic field as seen from Earth. By winding the large-scale field into strips of alternating positive and negative polarity, differential rotation causes the mean-field amplitude to decay and the mean-field rotation period to acquire the value corresponding to the latitude of the surviving unwound magnetic flux. For a latitudinally broad two-sector initial field such as a horizontal dipole, the decay is rapid for about 5 rotations and slow with a t –1/2 dependence thereafter. If a poleward meridional flow is present, it will accelerate the decay by carrying the residual flux to high latitudes where the line-of-sight components are small. The resulting decay is exponential with an e-folding time of 0.75 yr (10 rotations) for an assumed 15 m s–1 peak meridional flow speed.E.O. Hulburt Center for Space Research.Laboratory for Computational Physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号