首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tertiary volcanic rocks of Carriacou occupy two-thirds of the island. The volcanics include volcaniclastics, lava flows and dome lavas and range in composition from basalts to andesites. Carriacou basalts fall into two petrographic types (a) clinopyroxene-plagioclase-phyric basalts and (b) olivine microphyric basalts; the latter having higher MgO and lower Al2O3 than the clinopyroxene basalts. Both types are unusually rich in mafic minerals compared with Lesser Antilles basalts in general, although similar types have been reported from the nearby island of Grenada. The potash to silica ratios are relatively high and confirm the similarity between Carriacou and Grenada basalts and the differences between these basalts and basalts from other islands of the Lesser Antilles. The basaltic andesites and andesites from Carriacou correspond closely in mineralogical and chemical composition with typical andesites found elsewhere in the Lesser Antilles. The geochemistry of the volcanics shows that the olivine microphyric basalts display tholeiitic affinities whereas the clinopyroxeneplagioclase-phyric basalt, basaltic andesites and andesites are calcalkaline. The compositional gradation in both the geochemistry and mineralogy of these volcanics suggests that fractional crystallization played an important role in the derivation of the various magma.  相似文献   

2.
This paper is concerned with the islands of Montserrat Nevis, St. Kitts, St. Eustatius and Saba, which lie on the inner volcanic are at the northern of the Lesser Antilles. Andesites greatly predominate over basalts and dacites in this part of the arc. Generally the lavas from the northern Lesser Antilles contain low abundances of Ni, Cr and residual trace elements but lavas from Saba are enriched in these elements compared with the other islands in the group. The most important petrogenetic process in this part of the Lesser Antilles is probably partial melting of subducted oceanie tholeiite and this process accounts satisfactorily for the chemistry (especially the low Ni, Cr) and large volumes of the erupted andesites. Some andesites have, however, been produced by fractional crystallisation of basaltic magma and magma mixing probably accounts for some of the peculiar chemical and petrographic properties of the Saba andesites. The rocks from the Northern Lesser Antilles are different from those in the central part of the arc (more acid rocks, higher residual trace elements) and the southern islands have much higher proportions of basalt, some of it undersaturated and alkaline. It is thought that partial melting of mantle peridotite may be the predominant petrogenetic process at the southern end of the Lesser Antilles whereas partial melting of subducted oceanic crust is more important in the north.  相似文献   

3.
The Palei-Aike volcanic field, the southernmost unit of the Patagonian plateau lavas, consists of Pleistocene to Recent alkali olivine basalts petrologically and geochemically similar to alkali basalts from diverse tectonic environments. The Palei-Aike basalts have lower SiO2 and Al2O3 and higher TiO2 and P2O3 than published analyses of other Patagonian plateau basalts. Garnet, garnet + spinel-, and phlogopite-peridotites, not reported from other Patagonian plateau lavas or from elsewhere in South America, are common inclusions within Palei-Aike lavas along with spinel-lherzolite, dunite, granulites, and aluminous clinopyroxene megacrysts. The inclusion of these high-pressure assemblages indicates a mantle origin for the Palei-Aike lavas. The Patagonian plateau lavas are located in a tectonic position similar to back-arc basins, and their origin may be a consequence of subduction. The origin and distinct chemical features of the Palei-Aike basalts may be due in part to thermal or mechanical perturbations of the mantle related to changes in plate boundaries and motions in the vicinity of the unstable trench-transform triple junction formed by the South American, Antarctic and Scotia plates.  相似文献   

4.
The Fe/Mg+Fe) ratios (XFe) of the Quaternary basalts (SiO2 < 53 wt.%) in the Japanese arcs were examined. The XXFe of relatively magnesian basalts decreases from the volcanic front toward the Japan Sea across the arcs. Based on the partition coefficient of Mg-Fe2+ between olivine and liquid, it is suggested that all the basalts near the volcanic front, which are mostly tholeiitic basalts, are significantly fractionated, whereas many basalts near the Japan Sea, which are mostly alkali basalts, are little fractionated. The K2 O content in the primary basalt magmas increases toward the Japan Sea. Combining the XFe and K2 O data, it is suggested that relatively large amounts of tholeiitic magmas are produced near the volcanic front, but they fractionate during their ascent, whereas smaller amounts of alkali basalt magmas are formed near the Japan Sea, but they can ascend with less fractionation. The density of primary tholeiite magma is significantly larger than that of primary alkali basalt magmas. It is most likely that primary tholeiite magmas cannot ascend beyond the upper crust and would fractionate to produce less dense tholeiitic magmas near the volcanic front, whereas primary alkali basalt magmas can ascend through the upper crust without fractionation, as far as buoyancy is the principal ascending force. In the Japanese arcs, the stress field may be less compressional near the Japan Sea than near the volcanic front, so that magmas can ascend more rapidly in the latter region than in the former. These two factors may be responsible for the above mentioned chemical variations of basalt magmas across the arcs. The variation in volume of the Quaternary volcanic rocks across the arcs can be explained by the presence of a melt-rich zone above but nearly parallel to the subducted slab.  相似文献   

5.
Native copper occurs in hematitic and zeolitic pillow basalts (spilites) of Cretaceous age or older from La Désirade, Lesser Antilles. No similar occurrence has been described from the Greater or Lesser Antilles. The copper bearing basalts are anomalously old in a region of active subduction and are remnants of oceanic crust or island arc tholeiites  相似文献   

6.
Twenty-seven K-Ar ages have been measured on igneous rocks from islands of the Limestone Caribbees (St. Martin, St. Bartholomew, Antigua, and Grande Terre, Guadeloupe) and Martinique in the Lesser Antilles arc. Earlier paleontological data indicated that rocks on several of these islands are Eocene in age and among the oldest known in the arc.The oldest igneous activity on the islands studied is 35–40 m.y. Bifurcation of the Lesser Antilles arc north of Guadeloupe took place between 7 and 20 m.y. ago. A distinct physical overlap of older and younger volcanic arcs exists on Martinique.Our results do not support previous suggestions that the pre-Tertiary basement of the Greater Antilles extends through the Limestone Caribbees to the anomalously old, Jurassic-Cretaceous, igneous rocks of La Desirade.  相似文献   

7.
87Sr/86Sr and143Nd/144Nd ratios, REE and selected minor and trace elements are presented and compared for present-day volcanic rocks in the Scotia Sea.Tholeiitic basalts from the South Sandwich Islands show widely ranging contents of some lithophile elements, e.g. K2O (0.09–0.55%) and Rb (1.55–14.2 ppm), but fairly constant Na2O and Sr. Total REE contents range from about 4–20 times chondritic abundances with significant light-REE depletion and both positive and negative Eu anomalies. The variations in minor and trace element abundances are consistent with low-pressure fractional crystallization of plagioclase and clinopyroxene but only minor amounts of olivine. The87Sr/86Sr and143Nd/144Nd ratios of the parental magmas are thought be 0.7038–0.7039 and 0.51301–0.51314 respectively, and indicate derivation of at least some87Sr from subducted ocean crust.The back-arc tholeiites in the Scotia Sea have lower87Sr/86Sr ratios (0.7028–0.7033), similar143Nd/144Nd ratios (0.51305) and are variably light-REE-enriched(CeN/YbN= 1.0–1.6). Total REE contents are comparable to those of the South Sandwich Islands tholeiites.  相似文献   

8.
A bimodal volcanic suite with KAr ages of 0.05–1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures.Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts,Fe3+/ΣFe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs.H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. HighH2O/S, highδD, and low (MORB-like)δ34S ratios are considered primary and distinctive of the back-arc basin setting.  相似文献   

9.
The Chiang Khong segment of the Chiang Khong–Lampang–Tak Volcanic Belt is composed of three broadly meridional sub‐belts of mafic to felsic volcanic, volcaniclastic, and associated intrusive rocks. Associated sedimentary rocks are largely non‐marine red beds and conglomerates. Three representative Chiang Khong lavas have Late Triassic (223–220 Ma) laser ablation inductively coupled mass‐spectroscopy U–Pb zircon ages. Felsic‐dominated sequences in the Chiang Khong Western and Central Sub‐belts are high‐K calc–alkaline rocks that range from basaltic to dominant felsic lavas with rare mafic dykes. The Western Sub‐belt lavas have slightly lower high field strength element contents at all fractionation levels than equivalent rocks from the Central Sub‐belt. In contrast, the Eastern Sub‐belt is dominated by mafic lavas and dykes with compositions transitional between E‐mid‐oceanic ridge basalt and back‐arc basin basalts. The Eastern Sub‐belt rocks have higher FeO* and TiO2 and less light rare earth element enrichment than basalts in the high‐K sequences. Basaltic and doleritic dykes in the Western and Central sub‐belts match the composition of the Eastern Sub‐belt lavas and dykes. A recent geochemical study of the Chiang Khong rocks concluded that they were erupted in a continental margin volcanic arc setting. However, based on the dominance of felsic lavas and the mainly non‐marine associated sediments, we propose an alternative origin, in a post‐collisional extensional setting. A major late Middle to early Late Triassic collisional orogenic event is well documented in northern Thailand and Yunnan. We believe that the paucity of radiometric dates for arc‐like lavas in the Chiang Khong–Lampang–Tak Volcanic Belt that precede this orogenic event, coupled with the geochemistry of the Chiang Khong rocks, and strong compositional analogies with other post‐collisional magmatic suites, are features that are more typical of volcanic belts formed in a rapidly evolving post‐collisional, basin‐and range‐type extensional setting.  相似文献   

10.
Pb, Nd and Sr isotope compositions of oceanic basalts have been used to identify recycled components of continent derivation in the mantle. The isotopic compositions of Sr, Nd and Pb, together with U, Pb, Sm, Nd, Rb, and Sr abundances have been determined for back-arc basalt glasses from the Scotia Sea and Parece Vela and West Philippine Basins, in addition to basalts from South Sandwich Islands, Ascension, St. Helena and Tristan da Cunha. Comparisons made between the isotopic compositions of South Sandwich Islands basalts and Atlantic MORB glasses permit the identification of recycled components of continent derivation in the source of the island arc basalts. Recycled Sr of continent derivation is also recognisable in back-arc basalt glasses from the Scotia Sea and Parece Vela and West Philippine Basins. However, contemporary reinjection of material with the isotopic structures similar to those identified as a component of island arc and back-arc regions cannot be the sole or dominant influence on the fine structure observed in MORB glasses from the Atlantic Ocean, nor the isotopic compositions of Tristan da Cunha, St. Helena and Ascension basalts. Recycled materials are likely to have been responsible for the generation of these heterogeneities only if they have been stored in the mantle for periods of time exceeding 109 years.  相似文献   

11.
Quaternary basalt magmas in the Circum-Pacific belt and island arcs and also in Indonesia change continuously from less alkalic and more siliceous type (tholeiite) on the oceanic side to more alkalic and less siliceous type (alkali olivine basalt) on the continental side. In the northeastern part of the Japanese Islands and in Kamchatka, zones of tholeiite, high-alumina basalt, and alkali olivine basalt are arranged parallel to the Pacific coast in the order just named, whereas in the southwestern part of the Japanese Islands, the Aleutian Islands, northwestern United States, New Zealand, and Indonesia, zones of high-alumina basalt and alkali olivine basalt are arranged parallel to the coast. In the Izu-Mariana, Kurile, South Sandwich and Tonga Islands, where deep oceans are present on both sides of the island arcs, only a zone of tholeiite is represented. Thus the lateral variation of magma type is characteristic of the transitional zone between the oceanic and continental structures. Because the variation is continuous, the physico-chemical process attending basalt magma production should also change continuously from the oceanic to continental mantle. Suggested explanations for the lateral variation assuming a homogeneous mantle are: 1) Close correspondence between the variations of depth of earthquake foci in the mantle and of basalt magma type in the Japanese Islands indicates that different magmas are produced at different depths where the earthquakes are generated by stress release: tholeiite at depths around 100 km, high-alumina basalt at depths around 200 km, and alkali olivine basalt at depths greater than 250 km. 2) Primary olivine tholeiite magma is produced at a uniform level of the mantle (100–150 km), and on the oceanic side of the continental margin, it leaves the source region immediately after its production and forms magma reservoirs at shallow depths, perhaps in the crust, where it undergoes fractionation to produce SiO2-oversaturated tholeiite magma, whereas on the continental side, the primary magma forms reservoirs near the source region and stays there long enough to be fractionated to produce alkali olivine basalt magma, and in the intermediate zone, the primary magma forms reservoirs at intermediate depths where it is fractionated to produce high-alumina basalt magma.  相似文献   

12.
The Gangdese magmatic belt is located in the southern margin of the Lhasa terrane, south Tibet. Here zircon U–Pb ages and Hf isotopic data, as well as whole‐rock geochemistry and Sr–Nd isotopes on andesites from the Bima Formation with a view to evaluating the history of the Gangdese magmatism and the evolution of the Neotethys Ocean. Zircon U–Pb dating yields an age of ca 170 Ma from six samples, representing the eruptive time of these volcanic rocks. Zircon Hf isotopes show highly positive εHf(t) values of +13 to +16 with a mean of +15.2. Whole‐rock geochemical and Sr–Nd isotopic results suggest that the magma source of these andesites was controlled by partial melting of a depleted mantle source with addition of continental‐derived sediments, similar to those in the southern arcs of the Lesser Antilles arc belt. In combination with published data, the volcanic rocks of the Bima Formation are proposed to have been generated in an intra‐oceanic arc system, closely associated with northward subduction of the Neotethyan oceanic lithosphere.  相似文献   

13.
The Aeolian volcanic arc displays a wide range of magmatic products. Mafic lavas range from hypersthene normative calc-alkaline basalts to silica-undersaturated potassic absarokites, although the former are spatially and temporally dominant, consistent with the subduction-zone tectonic setting. In addition, intermediate and acidic members of the various fractionation series may be recognised. Large variations in trace element and isotope ratios accompany the rapid calc-alkaline to potassic transition, and it is argued that these may be largely explained in terms of subduction-zone mantle enrichment involving components derived from both basaltic ocean crust and subducted sediments. In addition, it seems that the mantle wedge itself was substantially heterogeneous prior to the onset of subduction zone processes. Not only are these subduction components similar to those proposed in a number of island arcs, but they also resemble those recognised in the ultra-potassic lavas of the Roman province, supporting recent subduction-related petrogenetic models of the Roman magmatism. Although subducted sediment plays an important role in the generation of some potassic magmatism, it is not uniquely responsible for K2O-rich lavas, which are also produced without a large sediment contribution.  相似文献   

14.
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water.  相似文献   

15.
Kouth-e-Shasavaran massif in South Iran (Baloutchistan) consists of Pliocene and Quaternary cale-alkaline lavas. Fourty one new chemical analysis have been carried out to identify the volcanic rock series. Andesites are more abundant than basic thigh alumina basalts) and acid lavas (dacites and rhyodacites). This volcanic area is probably connected with a subduction zone located on the North of Oman Gulf, between the arabic, indian and eurasian plates. In this respect, Makran range may be inerpreted as an emerged trench.  相似文献   

16.
An association of adakite, magnesian andesite (MA), and Nb-enriched basalt (NEB) volcanic flows, which erupted within ‘normal’ intra-oceanic arc tholeiitic to calc-alkaline basalts, has recently been documented in ∼2.7 Ga Wawa greenstone belts. Large, positive initial ?Nd values (+1.95 to +2.45) of the adakites signify that their basaltic precursors, with a short crustal residence, were derived from a long-term depleted mantle source. It is likely that the adakites represent the melts of subducted late Archean oceanic crust. Initial ?Nd values in the MA (+0.14 to +1.68), Nb-enriched basalts and andesites (NEBA) (+1.11 to +2.05), and ‘normal’ intra-oceanic arc tholeiitic to calc-alkaline basalts and andesites (+1.44 to +2.44) overlap with, but extend to lower values than, the adakites. Large, tightly clustered ?Nd values of the adakites, together with Th/Ce and Ce/Yb systematics of the arc basalts that rule out sediment melting, place the enriched source in the sub-arc mantle. Accordingly, isotopic data for the MA, NEBA, and ‘normal’ arc basalts can be explained by melting of an isotopically heterogeneous sub-arc mantle that had been variably enriched by recycling of continental material into the shallow mantle in late Archean subduction zones up to 200 Ma prior to the 2.7 Ga arc. If the late Archean Wawa adakites, MA, and basalts were generated by similar geodynamic processes as their counterparts in Cenozoic arcs, involving subduction of young and/or hot ocean lithosphere, then it is likely that late Archean oceanic crust, and arc crust, were also created and destroyed by modern plate tectonic-like geodynamic processes. This study suggests that crustal recycling through subduction zone processes played an important role for the generation of heterogeneity in the Archean upper mantle. In addition, the results of this study indicate that the Nd-isotope compositions of Archean arc- and plume-derived volcanic rocks are not very distinct, whereas Phanerozoic plumes and intra-oceanic arcs tend to have different Nd-isotopic compositions.  相似文献   

17.
Volcanic rocks from six of the currently or recently active volcances of the Mariana Island are show little variation in major element abundances. SiO2 content averages 51.5 wt.%. The flows are high in Al2O (mean 17.7 wt.%) and Fe oxides (mean 10.1 wt.% calculated as FeO only), and moderate in MgO content (mean 4.7 wt.%), Na2O (mean 2.7 wt.%), and K2O (mean 0.7 wt.%). Only the rocks from Farallon de Pajaros, the northernmost of the Mariana Islands, deviate slightly from the average of the analyses. Three analyses from this island are slightly higher in SiO2 (about 54 wt.%) and Al2O3, and are lower in total Fe oxides and MgO. According to preferred classification, the lavas of the Mariana Islands can be termed mela-andesites, high-alumina basalts, or calc-alkaline (orogenic) basalts. The K2O values (mean 0.7 wt.%) obtained from lavas of the Mariana Islands are significantly higher than the K2O values (about 0.33 wt.%) from volcanics of the Izu chain to the north. Inasmuch as the substantial scatter in location of earthquake foci beneath both arcs prevents accurate delineation of the upper boundary of the Benioff zone, it presently cannot be determined whether this discrepancy in K2O values reflects a difference in depth from the volcanic are to the dipping seismic zone or relates to other phenomena. The older volcanic islands within the Mariana-Bonin island chain apparently defined an island arc system during Eocene to Miocene time. This indicates that the present plane of convergence between the Pacific plate and the Philippine Sea plate has defined the convergence between these plates since Eocene time.  相似文献   

18.
The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na2O but enriched in K2O compared to younger lavas. There is an evolution through time towards higher TiO2, Fe2O3*, MgO, Na2O and K2O and lower Al2O3 and SiO2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6–7 m.y., has been accompanied by an increasing contribution of melt-enriched lithosphere. Although the range of variation of Sr, Nd and Pb isotopic ratios is small (0.70457–0.70515; 0.51262–0.51273; 18.80–18.94; 15.64–15.69; 38.87–39.10), it also reflects the evolution of the magma sources through time. Indeed, the youngest (Neovolcano) and most primitive basalts display significantly lower 87Sr/86Sr than the Paleo- and Mesovolcano basalts, whereas the Mesovolcano basalts display more radiogenic Pb than Paleovolcano samples. Magma mixing processes between initially heterogeneous and/or variably contaminated magmas may account for the genesis of the less differentiated and intermediate lavas (48–57% SiO2). Meso- and Neovolcano differentiated lavas (60–68% SiO2) are either derived from the analyzed basalts or from more primitive and more depleted magmas by fractional crystallization±some crustal contamination (AFC). Furthermore, the highly differentiated samples (72–75% SiO2) are not strongly contaminated. The strong calc-alkaline character of Hasan Dagi lavas, in the absence of contemporaneous subduction, must reflect the heritage of the early subduction of the Afro–Arabian plate under the Eurasian plate. The evolution towards alkaline compositions through time is clearly related to the development of extensional tectonics in Central Anatolia in the Late Miocene.  相似文献   

19.
The eruptions of the Soufrière Hills volcano on Montserrat (Lesser Antilles) from 1995 to present have draped parts of the island in fresh volcaniclastic deposits. Volcanic islands such as Montserrat are an important component of global weathering fluxes, due to high relief and runoff and high chemical and physical weathering rates of fresh volcaniclastic material. We examine the impact of the recent volcanism on the geochemistry of pre-existing hydrological systems and demonstrate that the initial chemical weathering yield of fresh volcanic material is higher than that from older deposits within the Lesser Antilles arc. The silicate weathering may have consumed 1.3% of the early CO2 emissions from the Soufrière Hills volcano. In contrast, extinct volcanic edifices such as the Centre Hills in central Montserrat are a net sink for atmospheric CO2 due to continued elevated weathering rates relative to continental silicate rock weathering. The role of an arc volcano as a source or sink for atmospheric CO2 is therefore critically dependent on the stage it occupies in its life cycle, changing from a net source to a net sink as the eruptive activity wanes. While the onset of the eruption has had a profound effect on the groundwater around the Soufrière Hills center, the geochemistry of springs in the Centre Hills 5 km to the north appear unaffected by the recent volcanism. This has implications for the potential risk, or lack thereof, of contamination of potable water supplies for the island’s inhabitants.  相似文献   

20.
Most of the lavas at the nine volcanic centers along the volcanic front of El Salvador are basalts, basaltic andesites and andesites. The compositional variation within and among these centers can be explained by fractionation processes within the crust. Cognate gabbroic inclusions found in the lavas have appropriate mineralogy (plagioclase, olivine, magnetite and augite) to be cumulates formed by fractional crystallization. Two main variation trends occur, depending on the proportion of plagioclase removal. The more common, or normal, trend has a high (> 55%) proportion of plagioclase being removed. A less common, Al-rich, trend has a low (40%) proportion of plagioclase being removed. The Al-rich trend is found only at volcanoes that lack large negative Bouguer gravity anomalies. These volcanoes are unlikely to have large shallow magma chambers and fractionation probably occurs deeper in the crust where plagioclase removal is inhibited.The incompatible element (Na2O, K2O, Rb, Ba) contents of lavas vary systematically with the volume of the volcanic centers. At the same level of SiO2, large volcanic centers have higher incompatible element contents than small volcanic centers. This suggests that open system fractionation in a periodically refilled chamber is the controlling factor. The large difference in Ba contents of lavas between eastern (low) and western (high) El Salvador suggests a difference in the mantle source region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号