首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We review the observations and theory relating to the role of energetic electrons in the solar flare, with particular emphasis on discriminating between thermal and nonthermal origins of these electrons. We discuss diagnostics in hard X-rays, especially those relating to the recent observations of the SMM and HINOTORI satellites. We also briefly address the response of the atmosphere to energy input in the form of high energy electrons, in particular through the diagnostics of both the Fe K feature and optically thin transition region lines such as 0V. Finally, we discuss the relative roles of electron and proton heating in -ray flare events.  相似文献   

2.
The velocity gradients of the contrastreaming electron beams observed in the Earth's magnetosphere can excite three types of ordinary mode instabilities, namely (i) B-resonance electron instability, (ii) ion cyclotron instability, and (iii) unmagnetized ion instability. The B-resonance electron instability occurs at small values of the shear parameter 10–4<S<10–3, whereS = [(1/e){dU o(x)}/(dx)] (U 0(x) and e being the streaming velocity of the electron beams and the electron cyclotron frequency, respectively). Near the equatorial plane of the bouncing electron beams region, this instability can generate electromagnetic waves having frequenciesf(0.045–0.2) Hz and wavelentghs (0.5–10)km, and the wave magnetic field is polarised in a radial direction. This instability can also occur in the plasma sheet region during the earthwards and tailwards plasma flows events and can generate waves, with wave magnetic field polarised along north-south direction, in the frequency rangef(0.007–0.02) Hz with (10–100)km nearR=–35R E . For 10–3<S<10–2, the ion cyclotron instability is excited and it can generate waves up to 5th harmonic or so of ion cyclotron frequency. ForS>10–2, the unmagnetized ion instability is excited which can generate electromagnetic waves having frequences from 5 to 50 Hz and typical wavelengths (0.5–6)km. The growth rates of all the three velocity shear driven instabilities are reduced in the presence of cold background plasma. The turbulence generated by these instabilities may give rise to enhanced effective electron-electron and electron-ion collisions and broaden the bouncing electron beams.  相似文献   

3.
Energetic solar electrons in the interplanetary medium   总被引:3,自引:0,他引:3  
R. P. Lin 《Solar physics》1985,100(1-2):537-561
ISEE-3 measurements extending down to 2 keV energy have provided a new perspective on energetic solar electrons in the interplanetary medium. Impulsive solar electron events are observed, on average, several times a day near solar maximum, with 40% detected only below 15 keV. The electron energy spectra have a nearly power-law shape extending smoothly down to 2 keV, indicating that the origin of these events is high in the corona. These coronal flare-like events often produced 3He-rich particle events.In large solar flares which accelerate electrons and ions to relativistic energies, the electron spectrum appears to be modified by a second acceleration which results in a double power-law shape above 10 keV with a break near 100 keV and flattening from 10–100 keV. Large flares result in long-lived (many days) streams of outflowing electrons which dominate the interplanetary fluxes at low energies. Even in the absence of solar activity, significant fluxes of low energy electrons flow out from the Sun.Solar type-III radio bursts are produced by the escaping 2–102 keV electrons through a beam-plasma instability. The detailed ISEE-3 measurements show that electron plasma waves are generated by the bump-on-tail distribution created by the faster electrons running ahead of the slower ones. These plasma waves appear to be converted into radio emission by nonlinear wave-wave interactions.  相似文献   

4.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

5.
Low frequency electromagnetic lower hybrid waves (so-called hybrid whistlers) propagating nearly transverse to the magnetic field can be driven unstable by a resonant interaction with halo electron distributions carrying solar wind heat flux. The electromagnetic lower hybrid instability is excited when the halo electron drift exceeds the parallel phase velocity of the wave. The growth rate attains a maxima at a certain value of the wavenumber. The maximum growth rate decrease by an increase in e (the ratio of electron pressure to magnetic field pressure) and halo electron temperature anisotropy. At 0.3 AU the growth time of the electromagnetic lower hybrid instability is of the order of 25 ms or shorter, whereas the most unstable wavelengths associated with the instability fall typically in a range of 27 to 90 km. The instability would give rise to a local heating of solar wind ions and electrons in the perpendicular and parallel directions relative to the magnetic field, B0. The observations of low frequency whistlers having high values ofB/E ratios (B andE being the magnitude of the wave magnetic and electric field, respectively) and propagating at large oblique angles to B0 behind interplanetary shocks, can be satisfactorily explained in terms of electromagnetic lower hybrid instability. The instability is also relevant to the generation mechanism of correlated whistler and electron plasma oscillation bursts detected on ISEE-3.  相似文献   

6.
We present an analysis of spacecraft observations of non-thermal X-rays and escaping electrons for 5 selected small solar flares in 1967. OSO-3 multi-channel energetic X-ray measurements during the non-thermal component of the solar flare X-ray bursts are used to derive the parent electron spectrum and emission measure. IMP-4 and Explorer-35 observations of > 22 keV and > 45 keV electrons in the interplanetary medium after the flares provide a measure of the total number and spectrum of the escaping particles. The ratio of electron energy loss due to collisions with the ambient solar flare gas to the energy loss due to bremsstrahlung is derived. The total energy loss due to collisions is then computed from the integrated bremsstrahlung energy loss during the non-thermal X-ray burst. For > 22 keV flare electrons the total energy loss due to collisions is found to be 104 times greater than the bremsstrahlung energy loss and 102 times greater than the energy loss due to escaping electrons. Therefore the escape of electrons into the interplanetary medium is a negligible energetic electron loss mechanism and cannot be a substantial factor in the observed decay of the non-thermal X-ray burst for these solar flares.We present a picture of electron acceleration, energy loss and escape consistent with previous observations of an inverse relationship between rise and decay times of the non-thermal X-ray burst and X-ray energy. In this picture the acceleration of electrons occurs throughout the 10–100 sec duration of the non-thermal X-ray burst and determines the time profile of the burst. The average energy of the accelerated electrons first rises and then falls through the burst. Collisions with the ambient gas provide the dominant energetic electron loss mechanism with a loss time of 1 sec. This picture is consistent with the ratio of the total number of energetic electrons accelerated in the flare to the maximum instantaneous number of electrons in the flare region. Typical values for the parameters derived from the X-ray and electron observations are: total energy in > 22 keV electrons total energy lost by collisions = 1028–29 erg, total number of electrons accelerated above 22 keV = 1036, total energy lost by non-thermal bremsstrahlung = 1024erg, total energy lost in escaping > 22 keV electrons = 1026erg, total number of > 22 keV electrons escaping = 1033–34.The total energy in electrons accelerated above 22 keV is comparable to the energy in the optical or quasi-thermal flare, implying a flare mechanism with particle acceleration as one of the dominant modes of energy dissipation.The overall efficiency for electron escape into the interplanetary medium is 0.1–1% for these flares, and the spectrum of escaping electrons is found to be substantially harder than the X-ray producing electrons.Currently at Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.  相似文献   

7.
We present here the results of the first systematic study of electrons of energies greater than 10 MeV associated with solar flares. We have made direct measurements of the frequency with which these particles are found in solar flare related events, the spectra of the particles, and the evolution of the spectra during these events. In addition the nature of the propagation of these electrons is studied and the degree of anisotropy in their diffusion is measured for the first time.The observations were made aboard the spacecraft OGO-5 from 1968, March through 1969, August. It is found that electrons in the energy range 12–45 MeV are normally present in major solar particle events. The time-intensity profiles of the fluxes indicate diffusive propagation; and the time-to-maximum intensity is found to vary with solar longitude in a way which can only be the result of anisotropic propagation with the perpendicular diffusion coefficient comparable in magnitude to, but smaller than, the parallel diffusion coefficient. Spectra during the observed events fit the power law AE with 2.5 3.8. The time evolution of the spectrum throughout the course of the 4 most intense events shows that the spectrum steepens rapidly during the initial phase but retains a constant slope through the decay phase.Events which behave in a manner which is not described by the normal diffusion picture are also discussed. These examples show phenomena other than direct flare injection followed by anisotropic diffusion.This work was supported in part by the National Aeronautics and Space Administration under Contract NAS 5-9096 and Grant NGL 14-001-005.Submitted to the Department of Physics, University of Chicago, Chicago, Illinois in partial fulfillment of the requirements for the Ph. D. degree.NASA Trainee 1967–1969.  相似文献   

8.
As a possible mechanism for particle acceleration in the impulsive phase of solar flares, a new particle acceleration mechanism in shock waves is proposed; a collisionless fast magnetosonic shock wave can promptly accelerate protons and electrons to relativistic energies, which was found by theory and relativistic particle simulation. The simultaneous acceleration of protons and electrons takes place in a rather strong magnetic field such that ce pe . For a weak magnetic field ( ce pe ), strong acceleration occurs to protons only. Resonant protons gain relativistic energies within the order of the ion cyclotron period (much less than 1 s for solar plasma parameters). The electron acceleration time is shorter than the ion-cyclotron period.  相似文献   

9.
Type III radio bursts observed at kilometric wavelengths ( 0.35 MHz) by the OGO-5 spacecraft are compared with > 45 keV solar electron events observed near 1 AU by the IMP-5 and Explorer 35 spacecraft for the period March 1968–November 1969.Fifty-six distinct type III bursts extending to 0.35 MHz ( 50 R equivalent height above the photosphere) were observed above the threshold of the OGO-5 detector; all but two were associated with solar flares. Twenty-six of the bursts were followed 40 min later by > 45 keV solar electron events observed at 1 AU. All of these 26 bursts were identified with flares located west of W 09 solar longitude. Of the bursts not associated with electron events only three were identified with flares west of W 09, 18 were located east of W 09 and 7 occurred during times when electron events would be obscured by high background particle fluxes.Thus almost all type III bursts from the western half of the solar disk observed by OGO-5 above a detection flux density threshold of the order of 10–13 Wm–2 Hz–1 at 0.35 MHz are followed by > 45 keV electrons at 1 AU with a maximum flux of 10 cm–2 s–1 ster–1. If particle propagation effects are taken into account it is possible to account for lack of electron events with the type III bursts from flares east of the central meridian. We conclude that streams of 10–100 keV electrons are the exciting agent for type III bursts and that these same electrons escape into the interplanetary medium where they are observed at 1 AU. The total number of > 45 keV electrons emitted in association with a strong kilometer wavelength type III burst is estimated to be 5 × 1032.  相似文献   

10.
We present a model of prompt high-energy particle acceleration during two-current-loop collisions. By investigating test proton and test electron motions in the electromagnetic field derived from the MHD equations, we found that high-energy particle acceleration occurs only in the case ofY-type, loop-loop collisions. The results depend strongly on the plasma and initial position of the test particle. When the plasma increases, the particle acceleration rate decreases. The particles near the edge of the collision region can be accelerated to higher energy than the ones inside it. It has been shown that both protons and electrons can be accelerated to 10 GeV within 0.001 s and 5 MeV within 10–6 s, respectively. In the case ofY-type loop-loop collisions, one may expect that high-energy gamma-ray and neutrons will be generated from interaction between high-energy particles and the low atmospheric plasma.  相似文献   

11.
The new class of -ray spectra from impulsive flares without nuclear -ray lines is compared with bremsstrahlung spectra of energetic electrons undergoing stochastic acceleration, Coulomb and synchrotron losses. The remarkable agreement of both the produced -spectra from the precipitated electrons and the electron spectra measured in the interplanetary space leads to the conclusion that seed population and acceleration process are identical for both classes of electrons. A new estimate of the electron bremsstrahlung contribution in -spectra of impulsive solar flares seems to be necessary.  相似文献   

12.
Voitenko  Yuriy  Goossens  Marcel 《Solar physics》2002,206(2):285-313
We study a kinetic excitation mechanism for high-frequency dispersive Alfvén waves in the solar corona by magnetic reconnection events. The ion-cyclotron and Cerenkov kinetic effects are important for these waves which we call the ion-cyclotron kinetic Alfvén waves (IC KAWs). The plasma outflowing from the reconnection site sets up a neutralized proton beam in the surrounding plasma, providing free energy for the excitation of waves. The dependence of the phase velocity of the IC KAW on the parallel wavenumber is different from that on the perpendicular wavenumber. The phase velocity is an increasing function of the perpendicular wavenumber and overtakes the Alfvén velocity for sufficiently large values of k . However, the phase velocity is a decreasing function of k , and sufficiently large values of k result in a phase velocity below the Alfvén velocity. As a result, the IC KAWs can undergo the Cerenkov resonance with both super- and sub-Alfvénic particles, and for the waves to be excited the outflow velocity does not need to be super-Alfvénic, as for KAWs, but the beam/Alfvén velocity ratio can span a wide range of values. High growth rates of the order of 104 s–1 are found for the values of the plasma parameters typical for the low solar corona. The waves excited by (sub-)Alfvénic beams are damped mainly due to kinetic wave-particle interactions with ions at the cyclotron resonance (ion-cyclotron damping), and with ions and electrons at the Cerenkov resonance (Landau damping). Therefore, IC KAWs can heat the plasma species of the corona in both the parallel and perpendicular direction, giving rise to an anisotropic heating of the ions. The observational consequences of the processes under study are discussed.  相似文献   

13.
The radiation of ultrarelativistic particles is examined in a quasi-uniform magnetic field superimposed by a wide spectrum of magnetic, electric, and electron density inhomogeneities created in a turbulent plasma. The radiation spectrum from a particle of a given energy is shown to acquire a high-frequency power-law tail with the same spectral index as the index of small-scale turbulence. For a power-law spectrum of ultrarelativistic electrons, dN()/d ~ , with a cut-off at some energy max, the radiation spectrum consists of a few power-law ranges; the radiation intensity may suffer jumps at frequencies which separate these ranges.In the high-frequency range the spectral index is determined by small-scale magnetic and electric fields. At intermediate frequencies the main contribution comes from the synchrotron radiation in a large-scale field; the radiation spectrum has an index =(–1)/2. The same index may be produced by large-scale Langmuir waves. At lower frequencies the radiation spectrum increases owing to the transition radiation caused by electron density fluctuations; in this case the spectral index is equal to +1–.The possibility of diagnostics of high-frequency cosmic plasma turbulence from radiation of high-energy particles is discussed. It is shown that the proposed theory may explain some features in the spectra of several cosmic objects.  相似文献   

14.
Doyle  J.G.  Keenan  F.P.  Ryans  R.S.I.  Aggarwal  K.M.  Fludra  A. 《Solar physics》1999,188(1):73-80
Using new close-coupling excitation rates for the C-like ion Siix, density-diagnostic ratios based on Siix lines have been re-evaluated and applied to a sequence of CDS observations taken above a polar coronal hole. The derived electron densities are in excellent agreement with previous values of Neestimated from the N-like ion Siviii for another coronal hole. The confirmed trend is for a fall-off of one order of magnitude within the first 0.3 Rabove the limb. These densities are well fitted with an analytic formula for the density profile out to at least 8 R, by which stage the electron density has fallen to 4×103 cm–3, from 1.5×108 cm–3at 1.0 R.  相似文献   

15.
The emission spectra and their time variations of gyro-synchrotron emission from an ensemble of energetic electrons are computed for some initial power-law distributions of the electron energies N()d= with =2 or 4. The spectra and decay curves of the emission are compared with solar microwave bursts in order to separately estimate the magnetic field H and . From a limited number of observations, we have 3 and H 103 gauss for the microwave impulsive bursts, and 2 and H (500–1000) gauss for the microwave type-IV bursts.  相似文献   

16.
It is suggested that boundary conditions for solar wind/lunar limb interactions are active. The whole-Moon limb does not evoke a shock cone because warm (13 eV/electron) solar wind electrons are replaced by cool (2 eV/electron) photoelectrons that are ejected from the generally smooth areas of the lunar terminator illuminated at glazing angles by the Sun. A localized volume of low thermal pressure is created in the solar wind by these cool photoelectrons. The solar wind expands into this turbulence-suppressive volume without shock production. Conversely, directly illuminated highland areas exchange hot photoelectrons (> 20 eV/electron) for warm solar wind electrons. The hot electrons generate a localized pressure increase (p) in the adjacent solar wind flow which evokes a shock streamer in the solar wind. Shock streamers are identifiable by a coincident increase in the magnitude (B p) of the solar wind magnetic field immediately external to the lunar wake. Shock occurrence is controlled by lunar topography, solar activity in the hard ultraviolet (> 20 eV), solar wind electron density and thermal velocity, and the intensity of the solar wind magnetic field.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

17.
An experimental study of the propagation of solar electrons with energyE e > 30 keV was carried out. Measurements were made during the period 1972-1974 using the Prognoz satellite-borne instruments.A two-component structure of electron fluxes was found. The fast component, rather well-observed after solar flares of minor importance, consists of a compact beam of electrons propagating without scattering inside a narrow cone with an opening 10° along interplanetary magnetic field lines. Characteristics of this component are given.Peculiarities of the slow or diffusive component of electron fluxes are compared with the diffusive component of solar protons. It is shown that the diffusion coefficient for non-relativistic electrons is the function of the number of particles injected in the event. A model of coherent propagation of non-relativistic electrons is offered, which takes into account the presence of the fast and slow components and their interaction with solar wind plasma oscillations.  相似文献   

18.
A model for second-step electron acceleration in impulsive solar flares is presented. We have extended the theory of stochastic particle acceleration to include Coulomb energy losses which become important at low coronal heights. This inclusion successfully explains the observed steepening of interplanetary electron spectra below 3 MeV following impulsive solar flares taking place at low coronal heights. It also explains the observed spectral differences of relativistic electrons in long-duration and impulsive flares.  相似文献   

19.
Melrose  D. B.  McClymont  A. N. 《Solar physics》1982,113(1-2):241-248
We consider two aspects of solar flares from the point of view of circuit theory. First, we show that the so-called dynamo models, which invoke an analogy between the Earth's magnetosphere-ionosphere circuit and the solar corona-photosphere circuit, are illfounded. Second, we consider the rate of coronal energy release in the impulsive phase of a modest flare, and show that, if the energy going into mass motion can be neglected, the corona must present a resistance of about 10–3 . Classical resistivity, even in a highly filamented circuit, cannot provide so high a resistance. Anomalous resistivity due to ion sound turbulence can provide the required resistance in this case, but is insufficient to explain the very high power levels inferred in some fast spikes.  相似文献   

20.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号