首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We have measured the brightness temperatures of Jupiter, Saturn, Uranus, and Neptune in the range 35 to 1000 μm. The effective temperatures derived from the measurements, supplemented by shorter wavelength Voyager data for Jupiter and Saturn, are 126.8 ± 4.5, 93.4 ± 3.3, 58.3 ± 2.0, and 60.3 ± 2.0°K, respectively. We discuss the implications of the measurements for bolometric output and for atmospheric structure and composition. The temperature spectrum of Jupiter shows a strong peak at ~350 μm followed by a deep valley at ~450 to 500 μm. Spectra derived from model atmospheres qualitatively reproduce these features but do not fit the data closely.  相似文献   

2.
New broadband observations in several passbands between 30 and 500 μm of Mercury, Venus, Mars, Jupiter, Saturn, and Uranus are presented. The best agreement between the data and various thermal models of Mars, Jupiter, and Uranus is obtained with a slightly cooler absolute temperature scale than that previously adopted by Armstrong et al. (1972). The effective temperature of Uranus is 58 ± 2°K, which is in agreement with its solar equilibrium temperature. The existence of an internal energy source of Saturn has been reconfirmed and must lie within the range of 0.9 to 3.2 times the absorbed solar flux. A depression exists in the spectra of Jupiter, Saturn, and Uranus between 80 and 300 μm, which may be a result of NH3 opacity.  相似文献   

3.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

4.
New values for the 1-mm brightness temperatures of Mercury, Venus, Jupiter, Saturn, Uranus, and Neptune have been determined using Mars as the absolute photometric standard.  相似文献   

5.
Significant variations in the near-infrared brightness of Neptune during July and August 1980 were observed. These observations show a well-defined, large-amplitude variation in Neptune's J-K color, with a period of 17.73 ± 0.1 hr and are interpreted as diurnal variations resulting from the 17.73-hr rotation period of the upper atmosphere of Neptune in the presence of inhomogeneous weather. These results qualitatively corroborate those of D. P. Cruikshank (1978, Astrophys. J.220, L57-L59) in an earlier study using similar techniques. In addition, variations were observed in the 5-μm spectral region which are in phase with the variations seen at shorter wavelengths. A new 5-μm measurement of Uranus is also reported.  相似文献   

6.
We investigated the stable area for fictive Trojan asteroids around Neptune’s Lagrangean equilibrium points with respect to their semimajor axis and inclination. To get a first impression of the stability region we derived a symplectic mapping for the circular and the elliptic planar restricted three body problem. The dynamical model for the numerical integrations was the outer Solar system with the Sun and the planets Jupiter, Saturn, Uranus and Neptune. To understand the dynamics of the region around L 4 and L 5 for the Neptune Trojans we also used eight different dynamical models (from the elliptic problem to the full outer Solar system model with all giant planets) and compared the results with respect to the largeness and shape of the stable region. Their dependence on the initial inclinations (0° < i < 70°) of the Trojans’ orbits could be established for all the eight models and showed the primary influence of Uranus. In addition we could show that an asymmetry of the regions around L 4 and L 5 is just an artifact of the different initial conditions.  相似文献   

7.
Five satellites of Neptune orbit under the synchronous zone. In this sense the Neptune's system is similar to that of Uranus (nine satellites) and differs from Jupiter (two) and Saturn (zero). The basic parameters describing the angular momentum within the Neptune's system and of its tidal evolution are estimated. The main character of the tidal dynamics is due to the retrograde Triton. The total tidal decrease in the spin angular momentum of Neptune is compared with those of Uranus, Jupiter and Saturn.  相似文献   

8.
We present far-infrared observations of Saturn in the wavelength band 76–116 μm, using a balloon-borne 75-cm telescope launched on 10 December 1980 from Hyderabad, India, when B′, the Saturnicentric latitude of the Sun, was 4°.3. Normalizing with respect to Jupiter, we find the average brightness temperature of the disk-ring system to be 90 ± 3° K. Correcting for the contribution from rings using experimental information on the brightness temperature of rings at 20 μm, we find TD, the brightness temperature of the disk, to be 96.9 ± 3.5° K. The systematic errors and the correction for the ring contribution are small for our observations. We, therefore, make use of our estimate of TD and earlier observations of Saturn when contribution from the rings was large and find that for wavelengths greater than 50 μm, there is a small reduction in the ring brightness temperature as compared to that at 20 μm.  相似文献   

9.
We present 20-μm photometry of Uranus and Neptune which confirms the presence of a temperature inversion in the lower stratospheres in both planets. We find the brightness temperature difference between 17.8 and 19.6 μm to be 0.8 ± 0.5°K for Uranus and 1.8 ± 0.6°K for Neptune. These results indicate that the temperature inversions on both planets are weaker than previously thought. Comparison to model atmospheres by J. Appleby [Ph.D. thesis, SUNY at Stony Brook 1980] indicates that the temperature inversions can be understood as arising from heating by the absorption of sunlight by CH4 and aerosols. However, the stratospheric CH4 mixing ratio on Neptune must be higher than that at the temperature minimum.  相似文献   

10.
《Planetary and Space Science》1999,47(10-11):1225-1242
Infrared spectra of Jupiter and Saturn have been recorded with the two spectrometers of the Infrared Space Observatory (ISO) in 1995–1998, in the 2.3–180 μm range. Both the grating modes (R=150–2000) and the Fabry-Pérot modes (R=8000–30,000) of the two instruments were used. The main results of these observations are (1) the detection of water vapour in the deep troposphere of Saturn; (2) the detection of new hydrocarbons (CH3C2H, C4H2, C6H6, CH3) in Saturn’s stratosphere; (3) the detection of water vapour and carbon dioxide in the stratospheres of Jupiter and Saturn; (4) a new determination of the D/H ratio from the detection of HD rotational lines. The origin of the external oxygen source on Jupiter and Saturn (also found in the other giant planets and Titan in comparable amounts) may be either interplanetary (micrometeoritic flux) or local (rings and/or satellites). The D/H determination in Jupiter, comparable to Saturn’s result, is in agreement with the recent measurement by the Galileo probe (Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., Niemann, H.B., 1998. Galileo probe measurements of D/H and 3He/4He in Jupiters atmosphere. Space Science Rev. 84 251–263); the D/H values on Uranus and Neptune are significantly higher, as expected from current models of planetary formation.  相似文献   

11.
J.A. Fernández  W.-H. Ip 《Icarus》1984,58(1):109-120
The final stage of the accretion of Uranus and Neptune is numerically investigated. The four Jovian planets are considered with Jupiter and Saturn assumed to have reached their present sizes, whereas Uranus and Neptune are taken with initial masses 0.2 of their present ones. Allowance is made for the orbital variation of the Jovian planets due to the exchange of angular momentum with interacting bodies (“planetesimals”). Two possible effects that may have contributed to the accretion of Uranus and Neptune are incorporated in our model: (1) an enlarged cross section for accretion of incoming planetesimals due to the presence of extended gaseous envelopes and/or circumplanetary swarms of bodies; and (2) intermediate protoplanets in mid-range orbits between the Jovian planets. Significant radial displacements are found for Uranus and Neptune during their accretion and scattering of planetesimals. The orbital angular momentum budgets of Neptune, Uranus, and Saturn turn out to be positive; i.e., they on average gain orbital angular momentum in their interactions with planetesimals and hence they are displaced outwardly. Instead, Jupiter as the main ejector of bodies loses orbital angular momentum so it moves sunward. The gravitational stirring of planetesimals caused by the introduction of intermediate protoplanets has the effect that additional solid matter is injected into the accretion zones of Uranus and Neptune. For moderate enlargements of the radius of the accretion cross section (2–4 times), the accretion time scale of Uranus and Neptune are found to be a few 108 years and the initial amount of solid material required to form them of a few times their present masses. Given the crucial role played by the size of the accretion cross section, questions as to when Uranus and Neptune acquired their gaseous envelopes, when the envelopes collapsed onto the solid cores, and how massive they were are essential in defining the efficiency and time scale of accretion of the two outer Jovian planets.  相似文献   

12.
High-resolution (0.1-Å) spectra of the 6815-Å band of methane are presented for Jupiter, Saturn, Uranus, and Neptune. Spectra for Uranus, Neptune, and the equatorial region of Saturn were acquired with the SPIFI (W. H. Smith, T. R. Hicks, and J. P. Born (1978). Proceedings of the 4th International Colloquium on Astrophysics, Triest, July 3–7, 1978. pp. 593–599) at the 2.2-m telescope of the Mauna Kea Observatory during May and June 1980. Additional spectra were obtained for Jupiter and the northern temperate and polar regions of Saturn in December 1980 and January 1981 from Kitt Peak National Observatory's McMath Solar Telescope. The spectra show a dichotomy in strength of methane absorption between Jupiter-Saturn and Uranus-Neptune. A simple model analysis, based on homogeneous scattering models, is unable to resolve whether this dichotomy is due to an actual increase in the methane mixing ratio with solar distance or to the temperature dependence of line strengths and absorption pathlengths in these atmospheres. If the rotational quantum number for the prominent 6818.9-Å feature is J < 4, then significant aerosol extinction must exist within the visibly accessible portion of Uranus' atmosphere for the methane mixing ratio to be greater than the solar value.  相似文献   

13.
J.A. Fernández  W.-H. Ip 《Icarus》1981,47(3):470-479
The dynamical evolution of bodies under the gravitational influence of the accreting proto-Uranus and proto-Neptune is investigated. The main aim of this study is to analyze the interrelations between the accretion of Uranus and Neptune with other processes of cosmological importance as, for example, the formation of a cometary reservoir from bodies placed into near-parabolic orbits by planetary perturbations and the scattering of bodies to the region of the terrestrial planets. Starting with a mass ratio (initial mass/present mass) of 0.1, Uranus and Neptune acquire masses close to their present ones in a time scale of 108 years. Neptune is found to be the most important contributor of comets to the cometary reservoir. The time scale of bodies scattered by Neptune to reach near-parabolic orbits (semimajor axes a > 104 AU)is about 109 years. The contribution of Uranus was partially inhibited because a large part of the residual bodies of its accretion zone fell under the strong gravitational influence of Jupiter and Saturn. A significant fraction of the bodies dispersed by Uranus and Neptune reached the region of the terrestrial planets in a time scale of some 108 years.  相似文献   

14.
We have resolved the relative rings-to-disk brightness (specific intensity) of Saturn at 39 μm (δλ ? 8 μm) using the 224-cm telecscope at Mauna Kea Oservatory, and have also measured the total flux of Saturn relative to Jupiter in the same bandpass from the NASA Learjet Observatory. These two measurements, which were made in early 1975 with Saturn's rings near maximum inclination (b′ ? 25°), determine the disk and average ring (A and B) brightness in terms of an absolute flux calibration of Jupiter in the same bandpass. While present uncertainties in Jupiter's absolute calibration make it possible to compare existing measurementsunambiguously, it is nevertheless possible to conclude the following: (1) observations between 20 and 40 μm are all compatible (within 2σ) of a disk brightness temperature of 94°K, and do not agree with the radiative equilibrium models of Trafton; (2) the rings at large tilt contribute a flux component comparable to that of the planet itself for λ ? 40 μm and (3) there is a decrease of ~22% in the relative ring: disk brightness between effective wavelengths of 33.5 and 39 μm.  相似文献   

15.
A.R.W. McKellar 《Icarus》1974,22(2):212-219
The effects of pressure shifts on the formation of H2 quadrupole absorption lines in the atmospheres of the major planets have not previously been considered. It is shown that, although pressure shifts have not been measured for the 3-0 and 4-0 H2 bands, they can be estimated from existing experimental and theoretical knowledge. Using these estimates, it is shown that the effect of pressure shifts is negligible for Jupiter and small for Saturn, but quite large for Uranus. Consideration of the shifts reduces H2 abundances determined for Uranus by from 25% to 50% as compared to calculations in which the shifts are ignored. The effect may be even larger for Neptune.  相似文献   

16.
Thermal models of planetary atmospheres can be calculated from assumptions of the energy budget of the atmosphere and from the knowledge of the effective temperature of the studied planet. On the other hand, the retrieval of the thermal atmospheric profiles from infrared measurements by means of the numerical inversion of the radiative transfer equation presents the advantages of not requiring such assumptions. The extent of the atmospheric range which can then be sounded is examined and the vertical resolution of the inferred profiles is discussed. Comparisons of thermal models and retrieved thermal profiles are made for the four giant planets. The retrieved profiles lead to brightness temperature spectra which fit all the available infrared measurements fairly well for Jupiter and Saturn but only part of them for Uranus and Neptune. The values of the planetary effective temperatures calculated from the retrieved profiles show that Jupiter, Saturn, and Neptune have strong internal heating sources while Uranus probably has a very small or null one.  相似文献   

17.
We present and discuss the results of the astrometry project during which we observed the satellites of Mars, Jupiter, Saturn, Uranus, and Neptune at the Abastumani Astrophysical Observatory (Georgia) between 1983 and 1994. Observations at the Abastumani Observatory were performed with the double Zeiss astrograph (DZA: D/F = 400/3024 mm) and AZT-11 telescope (F = 16 m). We processed a large array of observations and determined exact coordinates of the planets and their satellites in a system of reference stars of modern catalogues as well as relative coordinates of the satellites. The results were compared with modern ephemerides using the MULTI-SAT software. The comparison enabled us to estimate the accuracy of observations (their random and systematic uncertainties) and the accuracy of modern theories of the motion of planets and their satellites. Random uncertainties of observations are estimated to be 0.10??C0.40?? for various objects and observational conditions. Observational results obtained for Uranus, Neptune and the satellites Titania and Oberon were shown to deviate appreciably and systematically from theories of their motion. The results of observations are presented in the Pulkovo database for Solar System bodies that is available at the website http://www.puldb.ru.  相似文献   

18.
The Chree superposition analysis of the luminosities of the planets Jupiter, Saturn, Uranus and Neptune indicates a correlation between solar activity and planetary luminosity. The variations of the solar constant in the visible range are considered to be too small to explain the observed changes in brightness. The interaction of solar extreme ultraviolet or solar wind particles with the atmospheres of these planets is probably responsible for the increased albedo during periods of high solar activity.  相似文献   

19.
R.W. Russell  B.T. Soifer 《Icarus》1977,30(2):282-285
Moderate-resolution spectrophotometry (Δλ/λ~0.015) has shown the effects of known atmospheric constituents (NH3, CH4, C2H6) on the 5–8 μm spectrum of Jupiter. Broadband observations of Saturn at 6.5 μm are also reported.  相似文献   

20.
In the regions of mean diurnal motions between the orbits of Jupiter and Saturn, predicted earlier by the authors, five asteroids have been discovered that move in 1:2 and 2:3 Lindblad orbital resonances with Jupiter (external orbital commensurability) and in 2:1 resonance with Saturn (internal version of commensurability). In addition to this, in the precalculated stable resonance zones between the giant planets Saturn and Uranus, three objects have been found that possess third-order (2:5) orbital commensurability with Saturn; nine objects have been discovered between the orbits of Uranus and Neptune, whose mean motions are in 1:3 and 1:4 orbital resonances with Saturn, and more than 200 libration-stable objects, linked by lower-order orbital resonances with Neptune and Uranus have been found in the Kuiper belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号