首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
NGC 4649 (M60) is one of a handful of giant Virgo ellipticals. We have obtained Gemini/GMOS (Gemini North Multi-Object Spectrograph) spectra for 38 globular clusters (GCs) associated with this galaxy. Applying the multi-index  χ2  minimization technique of Proctor and Sansom with the single stellar population models of Thomas, Maraston and Korn, we derive ages, metallicities and α-element abundance ratios. We find several young (2–3 Gyr old) supersolar metallicity GCs, while the majority are old (>10 Gyr), spanning a range of metallicities from solar to  [Z/H]=−2  . At least two of these young GCs are at large projected radii of 17–20 kpc. The galaxy itself shows no obvious signs of a recent starburst, interaction or merger. A trend of decreasing α-element ratio with increasing metallicity is found.  相似文献   

2.
We have measured central line strengths for a complete sample of early-type galaxies in the Fornax cluster, comprising 11 elliptical and 11 lenticular galaxies, more luminous than M B  = −17. In contrast to the elliptical galaxies in the sample studied by González (and recently revisited by Trager) we find that the Fornax ellipticals follow the locus of galaxies of fixed age in Worthey's models and have metallicities varying from roughly solar to three times solar. The lenticular galaxies, however, exhibit a substantial spread to younger luminosity-weighted ages, indicating a more extended star formation history. We present measurements of the more sensitive indices: C4668 and HγA; these confirm and reinforce the conclusions that the elliptical galaxies are coeval and that only the lenticular galaxies show symptoms of late star formation. The inferred difference in the age distribution between lenticular and elliptical galaxies is a robust conclusion as the models generate consistent relative ages using different age and metallicity indicators even though the absolute ages remain uncertain. The young luminosity-weighted ages of the S0s in the Fornax cluster are consistent with the recent discovery that the fraction of S0 galaxies in intermediate-redshift clusters is a factor of 2–3 lower than found locally, and suggest that a fraction of the cluster spiral galaxy population has evolved to quiescence in the 5-Gyr interval from z  = 0.5 to the present. Two of the faintest lenticular galaxies in our sample have blue continua and strong Balmer-line absorption, suggesting starbursts ≲2 Gyr ago. These may be the low-redshift analogues of the starburst or post-starburst galaxies seen in clusters at z  = 0.3, similar to the Hδ-strong galaxies in the Coma cluster.  相似文献   

3.
We present the result of a photometric and Keck low-resolution imaging spectrometer (LRIS) spectroscopic study of dwarf galaxies in the core of the Perseus Cluster, down to a magnitude of   M B =−12.5  . Spectra were obtained for 23 dwarf-galaxy candidates, from which we measure radial velocities and stellar population characteristics from absorption line indices. From radial velocities obtained using these spectra, we confirm 12 systems as cluster members, with the remaining 11 as non-members. Using these newly confirmed cluster members, we are able to extend the confirmed colour–magnitude relation for the Perseus Cluster down to   M B =−12.5  . We confirm an increase in the scatter about the colour–magnitude relationship below   M B =−15.5  , but reject the hypothesis that very red dwarfs are cluster members. We measure the faint-end slope of the luminosity function between   M B =−18  and −12.5, finding  α=−1.26 ± 0.06  , which is similar to that of the field. This implies that an overabundance of dwarf galaxies does not exist in the core of the Perseus Cluster. By comparing metal and Balmer absorption line indices with α-enhanced single stellar population models, we derive ages and metallicities for these newly confirmed cluster members. We find two distinct dwarf elliptical populations: an old, metal-poor population with ages ∼8 Gyr and metallicities  [Fe/H] < −0.33  , and a young, metal-rich population with ages <5 Gyr and metallicities  [Fe/H] > −0.33  . Dwarf galaxies in the Perseus Cluster are therefore not a simple homogeneous population, but rather exhibit a range in age and metallicity.  相似文献   

4.
We have obtained Keck spectra for 16 globular clusters (GCs) associated with the merger remnant elliptical NGC 1052, as well as a long-slit spectrum of the galaxy. We derive ages, metallicities and abundance ratios from simple stellar population models using the recently published methods of Proctor & Sansom , applied to extragalactic GCs for the first time. A number of GCs indicate the presence of strong blue horizontal branches that are not fully accounted for in the current stellar population models. We find all of the GCs to be ∼13 Gyr old according to simple stellar populations, with a large range of metallicities. From the galaxy spectrum we find NGC 1052 to have a luminosity-weighted central age of ∼2 Gyr and metallicity of  [Fe/H]∼+0.6  . No strong gradients in either age or metallicity were found to the maximum radius measured  (0.3  r e≃ 1 kpc)  . However, we do find a strong radial gradient in α-element abundance, which reaches a very high central value. The young central starburst age is consistent with the age inferred from the H  i tidal tails and infalling gas of ∼1 Gyr. Thus, although NGC 1052 shows substantial evidence for a recent merger and an associated starburst, it appears that the merger did not induce the formation of new GCs, perhaps suggesting that little recent star formation occurred. This interpretation is consistent with 'frosting' models for early-type galaxy formation.  相似文献   

5.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

6.
We present high-resolution near-infrared imaging obtained using adaptive optics and HST /NICMOS, and ground-based spectroscopy of the hotspot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hotspots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H  ii regions, as revealed by the HST /NICMOS Pa α image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc.
The star formation properties of the stellar clusters and H  ii regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4–7×106 yr after the peak of star formation, or absolute ages 6.5–9.5×106 yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7–12 per cent of the total stellar mass in the central 625 pc of NGC 2903. The H  ii regions in the ring of star formation have luminosities close to that of the supergiant H  ii region 30 Doradus, they are younger than the stellar clusters, and they will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.  相似文献   

7.
We have obtained spectroscopic redshifts of colour-selected point sources in four wide area VLT-FLAMES (Very Large Telescope-Fibre Large Array Multi Element Spectrograph) fields around the Fornax cluster giant elliptical galaxy NGC 1399, identifying as cluster members 27 previously unknown faint     compact stellar systems (CSS), and improving redshift accuracy for 23 previously catalogued CSS.
By amalgamating our results with CSS from previous 2dF observations and excluding CSS dynamically associated with prominent (non-dwarf) galaxies surrounding NGC 1399, we have isolated 80 'unbound' systems that are either part of NGC  1399's globular cluster (GC) system or intracluster GCs. For these unbound systems, we find (i) they are mostly located off the main stellar locus in colour–colour space; (ii) their projected distribution about NGC  1399 is anisotropic, following the Fornax cluster galaxy distribution, and there is weak evidence for group rotation about NGC  1399; (iii) their completeness-adjusted radial surface density profile has a slope similar to that of NGC  1399's inner GC system; (iv) their mean heliocentric recessional velocity is between that of NGC  1399's inner GCs and that of the surrounding dwarf galaxies, but their velocity dispersion is significantly lower; (v) bright CSS  ( M V < −11)  are slightly redder than the fainter systems, suggesting they have higher metallicity; (vi) CSS show no significant trend in   g '− i '  colour index with radial distance from NGC  1399.  相似文献   

8.
We have derived ages and metallicities from co-added spectra of 131 globular clusters associated with the giant elliptical galaxy NGC 4472. Based upon a calibration with Galactic globular clusters, we find that our sample of globular clusters in NGC 4472 span a metallicity range of approximately −1.6≤[Fe/H]≤0 dex. There is evidence of a radial metallicity gradient in the globular cluster system which is steeper than that seen in the underlying starlight. Determination of the absolute ages of the globular clusters is uncertain, but formally, the metal-poor population of globular clusters has an age of 14.5±4 Gyr and the metal-rich population is 13.8±6 Gyr old. Monte Carlo simulations indicate that the globular cluster populations present in these data are older than 6 Gyr at the 95 per cent confidence level. We find that within the uncertainties, the globular clusters are old and coeval, implying that the bimodality seen in the broadband colours primarily reflects metallicity and not age differences.  相似文献   

9.
We present an examination of the kinematics and stellar populations of a sample of three brightest group galaxies (BGGs) and three brightest cluster galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise ratio Gemini/Gemini South Multi-Object Spectrograph (GMOS) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and α-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or α-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising, given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.  相似文献   

10.
The Hubble Space Telescope /Advanced Camera for Surveys ( HST /ACS) Coma Cluster Treasury Survey is a deep two-passband imaging survey of the nearest very rich cluster of galaxies, covering a range of galaxy density environments. The imaging is complemented by a recent wide field redshift survey of the cluster conducted with Hectospec on the 6.5-m Monolithic Mirror Telescope (MMT). Among the many scientific applications for these data is the search for compact galaxies. In this paper, we present the discovery of seven compact (but quite luminous) stellar systems, ranging from M32-like galaxies down to ultra-compact dwarfs (UCDs)/dwarf to globular transition objects (DGTOs).
We find that all seven compact galaxies require a two-component fit to their light profile and have measured velocity dispersions that exceed those expected for typical early-type galaxies at their luminosity. From our structural parameter analysis, we conclude that three of the samples should be classified as compact ellipticals or M32-like galaxies, and the remaining four being less extreme systems. The three compact ellipticals are all found to have old luminosity weighted ages (≳12 Gyr), intermediate metallicities  (−0.6 < [Fe/H] < −0.1)  and high [Mg/Fe] (≳0.25).
Our findings support a tidal stripping scenario as the formation mode of compact galaxies covering the luminosity range studied here. We speculate that at least two early-type morphologies may serve as the progenitor of compact galaxies in clusters.  相似文献   

11.
We present wide-area UBRI photometry for globular clusters around the Leo group galaxy NGC 3379. Globular cluster candidates are selected from their B -band magnitudes and their  ( U − B ) o   versus  ( B − I ) o   colours. A colour–colour selection region was defined from photometry of the Milky Way and M31 globular cluster systems. We detect 133 globular cluster candidates, which supports previous claims of a low specific frequency for NGC 3379.
The Milky Way and M31 reveal blue and red subpopulations, with  ( U − B ) o   and  ( B − I ) o   colours indicating mean metallicities similar to those expected based on previous spectroscopic work. The stellar population models of Maraston and Brocato et al. are consistent with both subpopulations being old, and with metallicities of  [Fe/H]∼−1.5  and −0.6 for the blue and red subpopulations, respectively. The models of Worthey do not reproduce the  ( U − B ) o   colours of the red (metal-rich) subpopulation for any modelled age.
For NGC 3379 we detect a blue subpopulation with similar colours, and presumably age/metallicity, to that of the Milky Way and M31 globular cluster systems. The red subpopulation is less well defined, perhaps due to increased photometric errors, but indicates a mean metallicity of [Fe/H]∼−0.6.  相似文献   

12.
We simulate the assembly of a massive rich cluster and the formation of its constituent galaxies in a flat, low-density universe. Our most accurate model follows the collapse, the star formation history and the orbital motion of all galaxies more luminous than the Fornax dwarf spheroidal, while dark halo structure is tracked consistently throughout the cluster for all galaxies more luminous than the SMC. Within its virial radius this model contains about     dark matter particles and almost 5000 distinct dynamically resolved galaxies. Simulations of this same cluster at a variety of resolutions allow us to check explicitly for numerical convergence both of the dark matter structures produced by our new parallel N -body and substructure identification codes, and of the galaxy populations produced by the phenomenological models we use to follow cooling, star formation, feedback and stellar aging. This baryonic modelling is tuned so that our simulations reproduce the observed properties of isolated spirals outside clusters. Without further parameter adjustment our simulations then produce a luminosity function, a mass-to-light ratio, luminosity, number and velocity dispersion profiles, and a morphology–radius relation which are similar to those observed in real clusters. In particular, since our simulations follow galaxy merging explicitly, we can demonstrate that it accounts quantitatively for the observed cluster population of bulges and elliptical galaxies.  相似文献   

13.
This paper explores if, and to what an extent, the stellar populations of early-type galaxies can be traced through the colour distribution of their globular cluster (GC) systems. The analysis, based on a galaxy sample from the Virgo Advanced Camera for Surveys data, is an extension of a previous approach that has been successful in the cases of the giant ellipticals NGC 1399 and NGC 4486, and assumes that the two dominant GC populations form along diffuse stellar populations sharing the cluster chemical abundances and spatial distributions. The results show that (a) integrated galaxy colours can be matched to within the photometric uncertainties and are consistent with a narrow range of ages; (b) the inferred mass to luminosity ratios and stellar masses are within the range of values available in the literature; (c) most GC systems occupy a thick plane in the volume space defined by the cluster formation efficiency, total stellar mass and projected surface mass density. The formation efficiency parameter of the red clusters shows a dependency with projected stellar mass density that is absent for the blue globulars. In turn, the brightest galaxies appear clearly detached from that plane as a possible consequence of major past mergers; (d) the stellar mass–metallicity relation is relatively shallow but shows a slope change at   M *≈ 1010 M  . Galaxies with smaller stellar masses show predominantly unimodal GC colour distributions. This result may indicate that less massive galaxies are not able to retain chemically enriched interstellar matter.  相似文献   

14.
We studied and compared the radial profiles of globular clusters and of the stellar bulge component in three galaxies of the Fornax cluster observed with the WFPC2 of the Hubble Space Telescope ( HST ). The stars are more concentrated toward the galactic centres than globular clusters, in agreement with what has already been observed in many other galaxies: if the observed difference is the result of evolution of the globular cluster systems starting from initial profiles similar to those of the halo–bulge stellar components, a relevant fraction of their initial mass (74, 47 and 52 per cent for NGC 1379, 1399 and 1404, respectively) should have disappeared in the inner regions. This mass has probably contributed to the nuclear field population, local dynamics and high-energy phenomena in the primeval life of the galaxy. An indication in favour of the evolutionary interpretation of the difference between the globular cluster system and stellar bulge radial profiles is given by the positive correlation we found between the value of the mass lost from the globular cluster system and the central galactic black hole mass in the set of seven galaxies for which these data are available.  相似文献   

15.
We present colour–magnitude diagrams for two rich (≈104 M) Large Magellanic Cloud star clusters with ages ≈107 yr, constructed from optical and near-infrared data obtained with the Hubble Space Telescope . These data are part of an HST project to study LMC clusters with a range of ages. In this paper we investigate the massive star content of the young clusters, and determine the cluster ages and metallicities, paying particular attention to Be-star and blue-straggler populations and evidence of age spreads. We compare our data with detailed stellar-population simulations to investigate the turn-off structure of ≈25 Myr stellar systems, highlighting the complexity of the blue-straggler phenomenon.  相似文献   

16.
We present the K -band (2.2 μm) luminosity functions (LFs) of the X-ray-luminous clusters MS1054–0321 ( z  = 0.823), MS0451–0305 ( z  = 0.55), Abell 963 ( z  = 0.206), Abell 665 ( z  = 0.182) and Abell 1795 ( z  = 0.063) down to absolute magnitudes M K  = −20. Our measurements probe fainter absolute magnitudes than do any previous studies of the near-infrared LFs of clusters. All the clusters are found to have similar LFs within the errors, when the galaxy populations are evolved to redshift z  = 0. It is known that the most massive bound systems in the Universe at all redshifts are X-ray-luminous clusters. Therefore, assuming that the clusters in our sample correspond to a single population seen at different redshifts, the results here imply that not only had the stars in present-day ellipticals in rich clusters formed by z  = 0.8, but that they existed in as luminous galaxies then as they do today.   Additionally, the clusters have K -band LFs which appear to be consistent with the K -band field LF in the range −24 <  M K  < −22, although the uncertainties in both the field and cluster samples are large.  相似文献   

17.
We study star-formation-inducing mechanisms in galaxies through multiwavelength measurements of a sample of dwarf galaxies in the Virgo cluster described in Paper I. Our main goal is to test how star-formation-inducing mechanisms depend on several parameters of the galaxies, such as morphological type and hydrogen content. We derive the star formation rate and star formation histories of the galaxies, and check their dependence on other parameters.   Comparison of the sample galaxies with population synthesis models shows that these objects have significantly lower metallicity than the solar value. The colours can generally be explained as a combination of two different stellar populations: a young (3–20 Myr) metal-poor population which represents the stars currently forming presumably in a starburst, and an older (0.1–1 Gyr) population of previous stellar generations. There is evidence that the older stellar population was also formed in a starburst. This is consistent with the explanation that star formation in this type of objects takes place in short bursts followed by long quiescent periods.   No significant correlation is found between the star formation properties of the sample galaxies and their hydrogen content. Apparently, when star formation occurs in bursts, other parameters influence the star formation properties more significantly than the amount of atomic hydrogen. No correlation is found between the projected Virgocentric distance and the rate of star formation in the galaxies, suggesting that tidal interactions are not significant in triggering star formation in cluster dwarf galaxies.  相似文献   

18.
Recent spectroscopic observations of galaxies in the Fornax Cluster reveal nearly unresolved 'star-like' objects with redshifts appropriate to the Fornax Cluster. These objects have intrinsic sizes of ≈100 pc and absolute B -band magnitudes in the range  −14< M B<−11.5 mag  and lower limits for the central surface brightness   μ B≳23 mag arcsec−2  , and so appear to constitute a new population of ultracompact dwarf galaxies (UCDs). Such compact dwarfs were predicted to form from the amalgamation of stellar superclusters (by Kroupa) , which are rich aggregates of young massive star clusters (YMCs) that can form in collisions between gas-rich galaxies. Here we present the evolution of superclusters in a tidal field. The YMCs merge on a few supercluster crossing times. Superclusters that are initially as concentrated and massive as knot S in the interacting Antennae galaxies evolve to merger objects that are long-lived and show properties comparable to the newly discovered UCDs. Less massive superclusters resembling knot 430 in the Antennae may evolve to ω Cen-type systems. Low-concentration superclusters are disrupted by the tidal field, dispersing their surviving star clusters while the remaining merger objects rapidly evolve into the   μ B− M B  region populated by low-mass Milky Way dSph satellites.  相似文献   

19.
We present Gemini Multi-Object Spectrograph longslit spectroscopy of the isolated S0 galaxy NGC 3115. We have determined kinematical data and Lick/IDS absorption line-strength indices for the major axis out to around 9 kpc and for the minor axis out to around 5 kpc (around 2R e ). Using stellar population models which include the effects of variable [α/Fe] ratios, we derive metallicities, abundance ratios and ages for the stellar population of NGC 3115. We find that [α/Fe] remains fairly constant with increasing radius at around  [α/Fe]= 0.17  for the major axis but increases rapidly for the minor axis to around  [α/Fe]= 0.3  . We also find that to first order, this behaviour can be explained by a simple spheroid + disc model, where the spheroid has  [α/Fe]= 0.3  and the disc shows close to solar abundance ratios. The disc also appears considerably younger than the spheroid, having an age of around 6 Gyr compared to 12 Gyr for the spheroid. We compare these results to those previously presented for the globular cluster system of NGC 3115.  相似文献   

20.
We carried out Washington system photometry of the intermediate-age Large Magellanic Cloud (LMC) star clusters NGC 2155 and SL 896 (LW 480). We derive ages and metallicities from the T 1 versus     colour–magnitude diagrams (CMDs). For the first time an age has been obtained for SL 896,     . For NGC 2155 we derive     . The two clusters basically define the lower age limit of the LMC age gap. In particular, NGC 2155 is confirmed as the oldest intermediate-age LMC cluster so far studied. The derived metallicities are     and     for NGC 2155 and SL 896, respectively. We also studied the CMDs of the surrounding fields, which have a dominant turn-off comparable to that of the clusters themselves, and similar metallicity, showing that one is dealing with an intermediate-age disc where clusters and field stars have the same origin. We inserted the present clusters in the LMC and Small Magellanic Cloud (SMC) age–metallicity relations, using a set of homogeneous determinations with the same method as in our previous studies, now totalling 15 LMC clusters and four SMC clusters, together with some additional values from the literature. The LMC and SMC age–metallicity relations appear to be remarkably complementary, since the SMC was actively star-forming during the LMC quiescent age gap epoch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号