首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An asymptotic solution of generation equations for the solar mean magnetic field is given and studied. The variation of rotational angular velocity with depth is taken from helioseismological data. Average helicity is prescribed according to the mixing length theory. It is shown that three dynamo waves of the magnetic field are excited. The first wave is generated at the surface layer and concentrates at latitudes of about 60°. Its activity becomes apparent in the poleward migration of the zone of polar faculae formation. The second more powerful wave of the field is excited in the center of the convection zone and its activity shows up in a sunspot cycle. The third wave which is similar to the first wave, is generated at the bottom of the convection zone and attenuates towards the surface. Its activity may appear as a three-fold reversal of the polar magnetic field.  相似文献   

2.
We summarize new and continuing three-dimensional spherical shell simulations of dynamo action by convection allowed to penetrate downward into a tachocline of rotational shear. The inclusion of an imposed tachocline allows us to examine several processes believed to be essential in the operation of the global solar dynamo, including differential rotation, magnetic pumping, and the stretching and organization of fields within the tachocline. In the stably stratified core, our simulations reveal that strong axisymmetric magnetic fields (of ∼ 3000 G strength) can be built, and that those fields generally exhibit a striking antisymmetric parity, with fields in the northern hemisphere largely of opposite polarity to those in the southern hemisphere. In the convection zone above, fluctuating fields dominate over weaker mean fields. New calculations indicate that the tendency toward toroidal fields of antisymmetric parity is relatively insensitive to initial magnetic field configurations; they also reveal that on decade-long timescales, the magnetic fields can briefly enter (and subsequently emerge from) states of symmetric parity.We have not yet observed any overall reversals of the field polarity, nor systematic latitudinal propagation. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Solar cycle according to mean magnetic field data   总被引:1,自引:0,他引:1  
To investigate the shape of the solar cycle, we have performed a wavelet analysis of the large–scale magnetic field data for 1960–2000 for several latitudinal belts and have isolated the following quasi-periodic components: ∼22, 7 and 2 yr. The main 22-yr oscillation dominates all latitudinal belts except the latitudes of ±30° from the equator. The butterfly diagram for the nominal 22-yr oscillation shows a standing dipole wave in the low-latitude domain  (∣θ∣≤ 30°)  and another wave in the sub-polar domain  (∣θ∣≥ 35°)  , which migrates slowly polewards. The phase shift between these waves is about π. The nominal 7-yr oscillation yields a butterfly diagram with two domains. In the low-latitude domain  (∣θ∣≤ 35°)  , the dipole wave propagates equatorwards and in the sub-polar region, polewards. The nominal 2-yr oscillation is much more chaotic than the other two modes; however the waves propagate polewards whenever they can be isolated.
We conclude that the shape of the solar cycle inferred from the large-scale magnetic field data differs significantly from that inferred from sunspot data. Obviously, the dynamo models for a solar cycle must be generalized to include large-scale magnetic field data. We believe that sunspot data give adequate information concerning the magnetic field configuration deep inside the convection zone (say, in overshoot later), while the large-scale magnetic field is strongly affected by meridional circulation in its upper layer. This interpretation suggests that the poloidal magnetic field is affected by the polewards meridional circulation, whose velocity is comparable with that of the dynamo wave in the overshoot layer. The 7- and 2-yr oscillations could be explained as a contribution of two sub-critical dynamo modes with the corresponding frequencies.  相似文献   

4.
The sunspot penumbra is a transition zone between the strong vertical magnetic field area (sunspot umbra) and the quiet Sun. The penumbra has a fine filamentary structure that is characterized by magnetic field lines inclined toward the surface. Numerical simulations of solar convection in inclined magnetic field regions have provided an explanation of the filamentary structure and the Evershed outflow in the penumbra. In this article, we use radiative MHD simulations to investigate the influence of the magnetic field inclination on the power spectrum of vertical velocity oscillations. The results reveal a strong shift of the resonance mode peaks to higher frequencies in the case of a highly inclined magnetic field. The frequency shift for the inclined field is significantly greater than that in vertical-field regions of similar strength. This is consistent with the behavior of fast MHD waves.  相似文献   

5.
Podesta  J.J. 《Solar physics》2003,218(1-2):227-246
To investigate the seismic waves generated at the surface of the convection zone by a sunquake, the solar convection zone is modeled as an incompressible fluid layer of finite depth which is excited by a pressure pulse just above the solar surface. Solutions for the surface displacement ζ as a function of time are obtained by solving the linearized Euler equations for wave propagation in an inviscid, incompressible fluid. Approximate solutions are derived using the method of stationary phase and formulas are obtained for the position of the wave crests versus time and the decay of the wave amplitude versus distance. Despite the very simple nature of the model, the resulting time–distance relation is found to exhibit the correct order of magnitude when compared to the observations of the flare initiated sunquake of 9 July 1996. However, the water wave model cannot fully explain the observations because, for one thing, the distance in between successive wave crests is greater than that seen in the observations. One may conclude that the sunquake is probably composed primarily of acoustic waves, that is, p modes and not f modes.  相似文献   

6.
E. Papini  L. Gizon  A. C. Birch 《Solar physics》2014,289(6):1919-1929
Linear time-domain simulations of acoustic oscillations are unstable in the stellar convection zone. To overcome this problem it is customary to compute the oscillations of a stabilized background stellar model. The stabilization affects the result, however. Here we propose to use a perturbative approach (running the simulation twice) to approximately recover the acoustic wave field while preserving seismic reciprocity. To test the method we considered a 1D standard solar model. We found that the mode frequencies of the (unstable) standard solar model are well approximated by the perturbative approach within 1 μHz for low-degree modes with frequencies near 3 mHz. We also show that the perturbative approach is appropriate for correcting rotational-frequency kernels. Finally, we comment that the method can be generalized to wave propagation in 3D magnetized stellar interiors because the magnetic fields have stabilizing effects on convection.  相似文献   

7.
Based on a plane-parallel isothermal model solar atmosphere stratified in the field of gravity, we investigate the main patterns of vertical propagation of magnetoacoustic gravity waves (MAGWs) in the approximation of a horizontal potential magnetic field. We have established that the cutoff frequency for MAGWs below which they cannot propagate does not depend on the magnetic field strength and is equal to that for acoustic gravity waves, the Lamb frequency. The cutoff frequency is shown to be unaffected by the linear interaction between counterpropagating MAGWs that results from a nonuniform height distribution of the Alfvén velocity and that causes the reflection of propagating waves at relatively large heights.  相似文献   

8.
P. S. Cally  M. Goossens 《Solar physics》2008,251(1-2):251-265
The efficacy of fast?–?slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfvén and sound speeds coincide. However, most of the models so far have been two dimensional. In three dimensions the Alfvén wave may couple to the magnetoacoustic waves with important implications for energy loss from helioseismic modes and for oscillations in the atmosphere above the spot. In this paper, we carry out a numerical “scattering experiment,” placing an acoustic driver 4 Mm below the solar surface and monitoring the acoustic and Alfvénic wave energy flux high in an isothermal atmosphere placed above it. These calculations indeed show that energy conversion to upward travelling Alfvén waves can be substantial, in many cases exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field strengths, the strongest Alfvén fluxes are produced when the field is inclined 30°?–?40° from the vertical, with the vertical plane of wave propagation offset from the vertical plane containing field lines by some 60°?–?80°.  相似文献   

9.
We propose a scenario to explain the observed phenomenon of double maxima of sunspot cycles, including the generation of a magnetic field near the bottom of the solar convection zone (SCZ) and the subsequent rise of the field from the deep layers to the surface in the royal zone. Five processes are involved in the restructuring of the magnetic field: the Ω-effect, magnetic buoyancy, macroscopic turbulent diamagnetism, rotary ?ρ-effect, and meridional circulation. It is found that the restructuring of magnetism develops differently in high-latitude and equatorial domains of the SCZ. A key role in the proposed mechanism of the double maxima is played by two waves of toroidal fields from the lower base of the SCZ to the solar surface in the equatorial domain. The deep toroidal fields are excited by the Ω-effect near the tachocline at the beginning of the cycle. Then these fields are transported to the surface due to the combined effect of magnetic buoyancy, macroscopic turbulent diamagnetism, and the rotary magnetic ?ρ-flux in the equatorial domain. After a while, these magnetic fragments can be observed as bipolar sunspot groups at the middle latitudes in the royal zone. This first, upward-directed wave of toroidal fields produces the main maximum of sunspot activity. However, the underlying toroidal fields in the high-latitude polar domains are blocked at the beginning of the cycle near the SCZ bottom by two antibuoyancy effects — the downward turbulent diamagnetic transfer and the magnetic ?ρ-pumping. In approximately 1 or 2 years, a deep equatorward meridional flow transfers these fields to low-latitude parts of the equatorial domain (where there are favorable conditions for magnetic buoyancy), and the belated magnetic fields (the second wave of toroidal fields) rise to the surface. When this second batch of toroidal fields comes to the solar surface at low latitudes, it leads to the second sunspot maximum.  相似文献   

10.
Propagation speeds are derived for the wave modes of a thin magnetic tube in an otherwise homogeneous magnetized or unmagnetized fluid. These results generalize results obtained by previous authors. There are three types of wave, a (torsional) Alfvén wave and two waves which are specific for the thin tube. These are named the longitudinal and transversal tube waves, according to their polarization properties. They can be camped by radiating an MHD or acoustic wave into the surroundings of the tube. Conditions for occurrence of this acoustic damping, and the damping rates, are derived. The behavior of the waves in the solar convection zone and corona is discussed.  相似文献   

11.
The propagation of solar waves through the sunspot of AR?9787 is observed by using temporal cross-correlations of SOHO/MDI Dopplergrams. We then use three-dimensional MHD numerical simulations to compute the propagation of wave packets through self-similar magnetohydrostatic sunspot models. The simulations are set up in such a way as to allow a comparison with observed cross-covariances (except in the immediate vicinity of the sunspot). We find that the simulation and the f-mode observations are in good agreement when the model sunspot has a peak field strength of 3 kG at the photosphere and less so for lower field strengths. Constraining the sunspot model with helioseismology is only possible because the direct effect of the magnetic field on the waves has been fully taken into account. Our work shows that the full-waveform modeling of sunspots is feasible.  相似文献   

12.
The pulsation of the solar surface is caused by acoustic waves traveling in the solar interior. Thorough analyses of observational data indicate that these f and p helioseismic oscillation modes are not bounced back completely at the surface but they partially penetrate into the atmosphere. Atmospheric effects and their possible observational application are investigated in one‐dimensional magnetohydrodynamic models. It is found that f and p mode frequencies are shifted of the order of μHz due to the presence of an atmospheric magnetic field. This shift varies with the direction of the wave propagation.Resonant coupling of global helioseismic modes to local Alfvén and slow waves reduce the life time of the global modes. The resulting line width of the frequency line is of the order of nHz, and it also varies with propagation angle. These features enable us to use helioseismic observations in magnetic diagnostics of the lower atmosphere. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Excess heating of the active region solar atmosphere is interpreted by the decay of MHD slow-mode waves produced in the corona through the non-linear coupling of Alfvén waves supplied from subphotospheric layers. It is stressed that the Alfvén-mode waves may be very efficiently generated directly in the convection layer under the photosphere in magnetic regions, and that such magnetic regions, at the same time, provide the ‘transparent windows’ for Alfvén waves in regard to the Joule and frictional dissipations in the photospheric and subphotospheric layers. Though the Alfvén waves suffer considerable reflection in the chromosphere and in the transition layer, a certain fraction of this large flux is propagated out to the corona, and a large velocity amplitude exceeding the local Alfvén velocity is attained during the propagation along the magnetic tubes of force into a region of lower density and weaker magnetic field. The otherwise divergence-free velocity field in Alfvén waves gets involved in such a case with a compressional component (slow-mode waves) which again is of considerable velocity amplitude relative to the local acoustic velocity when estimated by using the formulation for non-linear coupling between MHD wave modes derived by Kaburaki and Uchida (1971). Therefore, the compressional waves thus produced through the non-linear coupling of Alvén waves will eventually be thermalized to provide a heat source. The introduction of this non-linear coupling process and the subsequent thermalization of thus produced slow-mode waves may provide means of converting the otherwise dissipation-free Alfvén mode energy into heat in the corona. The liberated heat will readily be redistributed by conduction along the magnetic lines of force, with higher density as a consequence of increased scale height, and thus the loop-like structure of the coronal condensations (or probably also the thread-like feature of the general corona) may be explained in a natural fashion.  相似文献   

14.
M. Stix 《Solar physics》2000,196(1):19-27
Amplitude and phase of an acoustic oscillation in the solar convection zone vary in response to the local variation of the speed of sound and the convection velocity. Such wave modulation is considered by means of a two-dimensional periodic model, with alternating vertical channels of hot rising and cool sinking gas. According to this model, vertically propagating waves show only amplitude modulation. For low wave frequencies the amplitude is larger in the upflow channels, for high frequencies it is larger in the downflow channels. The transition occurs at a frequency for which the vertical wavelength is approximately equal to the horizontal period of the model. Waves with an inclined propagation direction show a similar amplitude modulation but, in addition, a modulation of their phase. The present results are compared with recent observational studies. There is evidence that wave modulation indeed occurs on the Sun, on the granular as well as on the mesogranular scale, in addition to the episodic amplitude enhancement that has been interpreted in terms of local acoustic events.  相似文献   

15.
Solar active regions are distinguished by their strong magnetic fields. Modern local helioseismology seeks to probe them by observing waves which emerge at the solar surface having passed through their interiors. We address the question of how an acoustic wave from below is partially converted to magnetic waves as it passes through a vertical magnetic field layer where the sound and Alfvén speeds coincide (the equipartition level), and find that (i) there is no associated reflection at this depth, either acoustic or magnetic, only transmission and conversion to an ongoing magnetic wave; and (ii) conversion in active regions is likely to be strong, though not total, at frequencies typically used in local helioseismology, with lower frequencies less strongly converted. A simple analytical formula is presented for the acoustic-to-magnetic conversion coefficient.  相似文献   

16.
K. Murawski 《Solar physics》1992,139(2):279-297
The nonlinear propagation of the Alfvén and magnetosonic waves in the solar corona is investigated in terms of model equations. Due to viscous effects taken into account the propagation of the fast wave itself is governed by Burgers type equations possessing both expansion and compression shock solutions. Numerical simulations show that both parallely and perpendicularly propagating fast waves can steepen into shocks if their amplitudes are in excess of some sizeable fraction of the Alfvén velocity. However, if the magnetic field changes linearly in the perpendicular direction, then formation of perpendicular shocks can be hindered. The Alfvén waves exhibit a tendency to drive both the slow and fast magnetosonic waves whose propagation is described by linearized Boussinesq type equations with ponderomotive terms due to the Alfvén wave. The limits of the slow and fast waves are investigated.  相似文献   

17.
Vanlommel  P.  Goossens  M. 《Solar physics》1999,187(2):357-387
This paper studies the effect of a magnetic atmosphere on the global solar acoustic oscillations in a simple Cartesian model. First, the influence of the ratio of the coronal and the photospheric temperature τ and the strength of the magnetic field at the base of the corona Bc on the oscillation modes is studied for a convection zone-corona model with a true discontinuity. The ratio τ seems to be an important parameter. Subsequently, the discontinuity is replaced by an intermediate chromospheric layer of thickness L and the effect of the thickness on the frequencies of the acoustic waves is studied. In addition, nonuniformity in the magnetic field, plasma density and temperature in the transition layer gives rise to continuous Alfvén and slow spectra. Modes with characteristic frequencies lying within the range of the continuum may resonantly couple to Alfvén and/or slow waves.  相似文献   

18.
We briefly describe historical development of the concept of solar dynamo mechanism that generates electric current and magnetic field by plasma flows inside the solar convection zone. The dynamo is the driver of the cyclically polarity reversing solar magnetic cycle. The reversal process can easily and visually be understood in terms of magnetic field line stretching and twisting and folding in three-dimensional space by plasma flows of differential rotation and global convection under influence of Coriolis force. This process gives rise to formation of a series of huge magnetic flux tubes that propagate along iso-rotation surfaces inside the convection zone. Each of these flux tubes produces one solar cycle. We discuss general characteristics of any plasma flows that can generate magnetic field and reverse the polarity of the magnetic field in a rotating body in the Universe. We also mention a list of problems which are currently being disputed concerning the solar dynamo mechanism together with observational evidences that are to be constraints as well as verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, particularly time variations of its magnetic field, plasma flows, and luminosity.  相似文献   

19.
Jiling  Han 《Solar physics》1999,185(2):391-396
In high-speed solar wind, propagating Alfvén waves can be transferred into fast magnetosonic waves. When both the magnetic field strength and Alfvén wave velocity approach zero, fast magnetosonic waves will be transferred into ion-acoustic waves. As the phase velocity of ion-acoustic waves is slightly greater than the thermal velocity of protons, the turbulence energy of ion-acoustic waves can largely be absorbed by protons and can cause the mean temperature of protons to be greater than that of electrons by stochastic turbulence heating of ion-acoustic waves for protons.  相似文献   

20.
The solar atmosphere is heated by a flux of mechanical waves propagating in one or more of the modes: acoustic, Alfvén and gravitational.The acoustic theory is compared with observational data and found inadequate. First, the theory is based quantitatively on the Böhm-Vitense convection zone model, and large-scale convective motions (supergranulation) and magnetic fields (unipolar regions) show that convection has another form. On the other hand, when granular motions are invoked the energy flux is too small. Second, atmospheric heating is localized in faculae, and enhanced acoustic flux beneath these regions is no longer explicable. Finally, the short periods of 10–30 s invoked recently appear inexplicable. Objections to the gravitational wave heating process are given briefly.Previous objections to Alfvén waves as an energy source followed from the belief that fields were generally uniform and of strength 50 G, now known to be incorrect. Models of Alfvén wave generation are based on (i) granule eddy motions, (ii) overstable oscillations in subsurface flux tubes and sunspot flux ropes, and (iii) supergranule motions, both horizontal and vertical.The first provides waves which propagate along thin flux tubes oscillating as taut wires in a compressible fluid; they may explain mottles, fibrils and other small emission features. The second may explain the enormous dissipation in spot groups, including flares. The third has been invoked earlier to explain spicules, and may have effects in the solar wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号