首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
台湾地区地震的空间关联维特征与构造环境研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用关联维方法对台湾地区地震活动的空间特征进行了研究。先利用 10 0a来台湾的地震目录计算各个地震区、带的关联维数 ,将地震空间分布的分形特征定量表达出来 ,然后综合分析地震空间分布的关联维数和孕震构造环境之间的关系 ,得出了以下结论 :1)台湾东、西部地震区由于地震属于不同的大地构造单元 ,因此关联维数有较大的差异 ;2 )在各地震区内部的各个地震带由于板块构造、地壳结构、活断层分布上的差异 ,而具有与其构造特征相对应的关联维数 ;3)各地震带内部的各个不同的部位又由于不同的构造应力场 ,而导致地震分布上出现不同的丛集性 ,表现为不同的关联维数。这些结论充分说明通过关联维分析所得到的地震活动的空间图像与地震活动所代表的不同地质构造背景有着良好的对应关系  相似文献   

2.
This study is an attempt to identify seismic zones utilizing number-size (N-S) and concentration-area (C-A) fractal models in the West Yazd province, Central Iran. The analysis was based on the earthquakes’ magnitude and Quaternary faults’ density. Fault density map was generated and classified by fractal modeling. The result indicates that the main fault densities correlate with Dehshir and Eqlid faults. Furthermore, the areas with relatively large earthquake magnitudes are located in the SE and NE parts of the region. The Quaternary faults’ density and earthquake magnitudes were weighted based on the results of the fractal modeling. Finally, weighted maps were combined and classified to show that Dehshir fault has the main role for seismicity in this area. Comparison between results derived via the fractal modeling and conventional seismic zonation map is satisfactory. Furthermore, fractal modeling approach distinguishes different seismic zones with higher accuracy in smaller areas. For validation of results, earthquakes since 2012 were collected and associated with seismic zones. These earthquakes which are correlated with major seismic zones are mainly located near the Dehshir and main Zagros faults.  相似文献   

3.
The kinematics of gouge deformation   总被引:13,自引:0,他引:13  
The methods and first results of a new approach to examining fault gouge are described. Samples of undisturbed fault gouge from the exhumed Lopez fault zone in the San Gabriel Mountains, California were impregnated with low viscosity epoxy resin and sectioned to produce microscope slides. The slides were photographed using optical and electron microscopy with magnifications ranging in factors of 2 from 12.5 to 1600. At all scales, the particles appeared angular with planar faces, suggesting tensile failure. No shear zones were discernable. The particle size distribution was studied. At each magnification the particles were sorted by diameter into four classes, differing in mean diameter by factors of 2. The numbers in each class were then scaled by the characteristic class dimension. The process revealed a remarkable degree of self-similarity. Over the range examined, the fractal dimension was within 5% of 2.60.On the basis of the observations, a new model for the mechanical processes that generate gouge is offered. It is argued that self-similarity results from repeated tensile splitting of grains. Unlike earlier models that consider splitting probability to be either independent of particle size or due to the preexisting distribution of defects, we propose that failure probability depends largely on the relative size of nearest neighbors. If nearest neighbors of the same size are preferentially broken, any initial distribution of particles will tend toward a self-similar distribution having a fractal dimension of 2.58.The model allows us to outline a procedure whereby the observed comminution in a fault zone can be related to the shear strain that the zone has accommodated and propose a theoretical frequency magnitude relation for the seismic energy emitted by the fracture process.  相似文献   

4.
用分形理论研究海南岛的活动断裂   总被引:6,自引:0,他引:6  
陈运平  席道瑛  樊星 《地震研究》2002,25(4):351-355
在编制海南岛及其邻近地区地震构造图的基础上,利用数盒子法计算了海南岛的活动断裂的分形维数,并从分形理论的角度讨论了活动断裂和地震活动性之间的关系,认为活动断裂的分形维数和地震活动性的分形维数是相等的。从活动断裂的分形维数和地震活动性的分形维数的一致性来看,区域性的地震活动可能受到该地区活动断裂空间分布的制约和作用。  相似文献   

5.
In this work,the fractal dimension of granulometric composition in the fault gouge from the Yishu fault zone and northwest-trending faults on its west side is calculated and studied based on the fractal theory of rock fragmentation.The seismo-geological implications of the fractal dimension of granulometric composition in fault gouges are also discussed.The results show that the Yishu fault zone is more active than the northwest-trending faults and the Anqiu-Juxian fault is the most active in the Yishu fault zone.The fractal dimension of fault gouge is a parameter describing the relative active age and rupture mode of the fault and forming age of the fault gouge.The fractal dimension value is also related to the parent rock,thickness,structural position,and clay content of the fault gouge.  相似文献   

6.
The characteristics and correlation of faults and earthquakes are discussed based on fractal and statistical analysis of the earthquakes in the last 500 years and the active faults in China. It is found that fractal relationship exists between the frequency and the length of the active faults, and the fractal dimension is 1.70 in the continental region of China, and 1.40 in the northwest China. The fractal relationship also exists between the frequency and the scales of earthquakes during the last five centuries and the fractal dimension is 1.30 for the whole continental region of China and 1.08 for the northwest China. The differences of the fractal dimensions between the active faults and the earthquakes indicate that some of the active faults have not caused earthquakes during the last 500 years. The differences of fractal dimensions of the active faults and earthquakes between the northwest China and the whole continental region of China suggest that the frequency of strong earthquakes is greater in northwest China than that of the average level of China, because the number of longer active faults is larger in northwest China than that of the average in whole China. Thus, the fractal analysis is an effective method for studies of faults and earthquakes.  相似文献   

7.
王华林  耿杰 《中国地震》1996,12(3):307-315
利用岩石碎裂数目的分形理论,分析,计算了沂沭断裂带及其西侧北西向断裂的断层泥粒度成分的分维值,讨论了断层泥粒度成分分维的地震地质意义,研究结果表明,沂沭断裂带内的断裂活动的强度大于北西向断裂活动强度;F2是沂沭断裂带中活动最强的一条断裂,断层泥粒度成分分维值可作为表征断裂活动时代,破裂形式和断层泥形成斫代等的参量;分维值还与断层泥的母岩,厚度,粘土矿物含量和所处的断裂部位等相关。  相似文献   

8.
Fractalanalysisappliedtofaultsandearthquakes———AcasestudyofChinaJIANWANG(王建)XIAOHUAZHU(朱晓华)YONGHUIXU(徐永辉)DepartmentofGeog...  相似文献   

9.
海原断层系的分形研究   总被引:17,自引:0,他引:17       下载免费PDF全文
本文根据Okubo等人测量圣安德烈斯断层系所用的复盖维数法,对海原断层系进行了分形测量,求出海原断层系的整体维数D_0=1.137,其景泰段D_0=1.109,海原段D_0=1.182。计算中未得到邵家水段和李使堡段的分维数。此外,文中还着重探讨了断层几何与地震活动性及其力学环境的关系,进一步证明了自相似断层的几何复杂性与地震活动密切相关,剪切断裂带具较低分维数(1.1—1.3),而在张性环境中形成的断裂体系具较高的分维数(1.5—1.6)。最后本文讨论了断层迹线图等因素对分形测量精度的影响。  相似文献   

10.
The geometry of faults at seismogenic depths and their continuation into the ductile zone is of interest for a number of applications ranging from earthquake hazard to modes of lithospheric deformation. Teleseismic passive source imaging of faults and shear zones can be useful particularly where faults are not outlined by local seismicity. Passive seismic signatures of faults may arise from abrupt changes in lithology or foliation orientation in the upper crust, and from mylonitic shear zones at greater depths. Faults and shear zones with less than near-vertical dip lend themselves to detection with teleseismic mode-converted waves (receiver functions) provided that they have either a contrast in isotropic shear velocity (V s), or a contrast in orientation or strength of anisotropic compressional velocity (V p). We introduce a detection method for faults and shear zones based on receiver functions. We use synthetic seismograms to demonstrate common features of dipping isotropic interfaces and contrasts in dipping foliation that allows determination of their strike and depth without making further assumptions about the model. We proceed with two applications. We first image a Laramide thrust fault in the western U.S. (the Wind River thrust fault) as a steeply dipping isotropic velocity contrast in the middle crust near the surface trace of the fault; further downdip and across the range, where basin geometry suggests the fault may sole into a subhorizontal shear zone, we identify a candidate shear zone signal from midcrustal depths. The second application is the use of microstructural data from exhumed ductile shear zones in Scotland and in the western Canadian Shield to predict the character of seismic signatures of present-day deep crustal shear zones. Realistic anisotropy in observed shear fabrics generates a signal in receiver functions that is comparable in amplitude to first-order features like the Moho. Observables that can be robustly constrained without significant tradeoffs are foliation strike and the depth of the foliation contrast. We find that an anisotropy of only a few percent in the shear zone is sufficient to generate a strong signal, but that the shear zone width is required to be >2 km for typical frequencies used in receiver function analysis to avoid destructive interference due to the signals from the boundaries of the shear zone.  相似文献   

11.
测井数据分维计算及其应用条件研究   总被引:6,自引:1,他引:5  
分形几何已成功地应用于储层表征,分维是储层一征和随机建模的控制参数,为了准确表征储层,必须精确地估计分维值。本文介绍了利用测井数据计算储层分维值的三种方法:变尺度分析法(R/S分析),变异函数分析法、功率谱分析法,研究发现分维计算中对数据的分级处理实际上就是对数据进行灰色累加生成。研究表明影响分维估计精度的主要因素有四种:数据点数、数据概率分布、数据平稳性,无标度区,研究认为,现有的3种方法不能用  相似文献   

12.
The fractal dimension of an individual floc is a measure of the complexity of its external shape. Fractal dimensions can also be used to characterize floc populations, in which case the fractal dimension indicates how the shape of the smaller flocs relates to that of the larger flocs. The objective of this study is to compare the fractal dimensions of floc populations with those of individual flocs, and to evaluate how well both indicate contributions of sediment sources and reflect the nature and extent of flocculation in streams. Suspended solids were collected prior to and during snowmelt at upstream and downstream sites in two southern Ontario streams with contrasting riparian zones. An image analysis system was used to determine area, longest axis and perimeter of flocs. The area–perimeter relationship was used to calculate the fractal dimension, D, that characterizes the floc population. For each sample, the fractal dimension, Di , of the 28 to 30 largest individual flocs was determined from the perimeter–step‐length relationship. Prior to snowmelt, the mean value of Di ranged from 1·19 (Cedar Creek, downstream) to 1·22 (Strawberry Creek, upstream and downstream). A comparison of the means using t‐tests indicates that most samples on this day had comparable mean values of Di . During snowmelt, there was no significant change in the mean value of Di at the Cedar Creek sites. In contrast, for Strawberry Creek the mean value of Di at both sites increased significantly, from 1·22 prior to snowmelt to 1·34 during snowmelt. This increase reflects the contribution of sediment‐laden overland flow to the sediment load. At three of the sampling sites, the increase in fractal dimensions was accompanied by a decreases in effective particle size, which can be explained by an increase in bed shear stress. A comparison of fractal dimensions of individual flocs in a sample with the fractal dimensions of the floc populations indicates that both fractal dimensions provide similar information about the temporal changes in sediment source contributions, about the contrasting effectiveness of the riparian buffer zones in the two basins, and about the hydraulic conditions in the streams. Nevertheless, determining the individual fractal dimensions of a set of large flocs in a sample is very time consuming. Using fractal dimensions of floc populations is therefore the preferred method to characterize suspended matter. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
地震记录的广义分维及其应用   总被引:15,自引:5,他引:15       下载免费PDF全文
根据分形理论,对不同信噪比地震记录的分维特征进行了分析,指出地震记录中噪声背景与信号部分具有不同的分维尺度,地震道时间序列的分维数值与计算时所用的测量尺度有关,因此,可利用广义分维的概念计算地震记录的分数维.地震记录广义分维大大提高了分形算法在计算机自动识别地震波震相时的抗噪声能力.最后用本文方法对实际地震记录进行了有效的初至波自动拾取.  相似文献   

14.
Based on fault maps, whether or not the fracture geometry of rocks is self-similar, was examined by using a box-counting algorithm. The statistical self-similarity (fractal structure) of the fault fracture systems holds well at the scale of about 2 to 20 km. The fractal dimension in Japan varied from 1.05 to 1.60. The fractal dimension is about 1.5–1.6 at the central part of the Japan Arc, and decreases with distance from the center. At a smaller scale, the fractal structure also holds well in the rock fracture geometry. The fractal dimension of the North Izu Peninsula fault system (branching faults) is 1.49 at the scale of 0.625 to 10 km, the fractal dimension of rock fracture geometry at the scale order of 10–1 to 10–2 meters is about 1.49–1.61. The upper limit of the fractal dimension of rock fracture geometry is about 1.6, judging from the estimation of fractal dimension on actual fracture geometry of rocks. This value may impose a restraint on modeling of faulting and the fracture process of rocks.  相似文献   

15.
鲜水河断裂形变场、重力场、磁场动态演化特征与地震   总被引:2,自引:1,他引:1  
据鲜水河断裂跨断层形变测量、流动重力测量和流动磁力测量资料,求取各点的形变速度、重力变化速率及每年各点的总磁场强度,绘出每期 形变、重力、磁力的二维图像。引入分形理论的数盒子方法,计算每幅图的容量维。研究结果表明:鲜水河断裂形变场的二维图像在地震前后的演变与岩石破坏实验过程输出的图像相似,均经历了“复杂-简单-复杂”的演化过程。相应的分维值也同样呈“高值-低值-高值”变化,且地震发生在分维值达最低后恢复过程中。重力场的二维图像在地震前后的变化特征为“简单-复杂”,分维值呈低值向高值变化。磁场的图像变化则呈“复杂-简单”,分维值变化呈降维特征。  相似文献   

16.
武孔春 《地震研究》1991,14(1):23-29
本文引入地震断层的自扩展破裂模式,用以解释地震序列的特征并计算地震断层的分维数。由自扩展破裂模式,本文导出地震断层的分维数为D=ln(1+Abln q/1+q)/ln q/1+q,其中q为余震区长度与主震的破裂尺度之比,A=2.1。在q≥1时,D=Ab,这与Aki的公式b=D/2是一致的。  相似文献   

17.
The quantitative analysis of morphologic characteristics of bedrock fault surface is a useful approach to study faulting history and identify paleo-earthquake. It is an effective complement to trenching technique, specially to identifying paleo-earthquakes in a bedrock area where the trenching technique cannot be applied. This paper focuses on the Luoyunshan piedmont fault, which is an active normal fault extending along the eastern boundary of the Shanxi Graben, China. There are a lot of fault scarps along the fault zone, which supply plentiful samples to be selected to our research, that is, to study faulting history and identify paleo-earthquakes in bedrock area by the quantitative analysis of morphologic characteristics of fault surfaces. In this paper, we calculate the 2D fractal dimension of two bedrock fault surfaces on the Luoyunshan piedmont fault in the Shanxi Graben, China using the isotropic empirical variance function, which is a popular method in fractal geometry. Results indicate that the fractal dimension varies systematically with height above the base of the fault surface exposures, indicating segmentation of the fault surface morphology. The 2D fractal dimension on a fault surface shows a ‘stair-like’ vertical segmentation, which is consistent with the weathering band and suggests that those fault surfaces are outcropped due to periodic faulting earthquakes. However, compared to the results of gneiss obtained by the former researchers, the characteristic fractal value of limestone shows an opposite evolution trend. 1)The paleo-earthquake study of the bedrock fault surface can be used as a supplementary method to study the activity history of faults in specific geomorphological regions. It can be used to fill the gaps in the exploration of the paleo-earthquake method in the bedrock area, and then broaden the study of active faults in space and scope. The quantitative analysis of bedrock fault surface morphology is an effective method to study faulting history and identify paleo-earthquake. The quantitative feature analysis method of the bedrock fault surface is a cost-effective method for the study of paleo-earthquakes in the bedrock fault surface. The number of weathered bands and band height can be identified by the segment number and segment height of the characteristic fractal dimension, and then the paleoearthquake events and the co-seismic displacement can be determined; 2)The exposure of the fault surface of the Luoyunshan bedrock is affected and controlled by both fault activity and erosion. A strong fault activity(ruptured earthquake)forms a segment of fault surface which is equivalent to the vertical co-seismic displacement of the earthquake. After the segment is cropped out, it suffers from the same effect of weathering and erosion, and thus this segment has approximately the same fractal dimension. Multiple severe fault activities(ruptured earthquake)form multiple fault surface topography. The long-term erosion under weak hydrodynamic conditions at the base of the fault cliff between two adjacent fault activities(intermittent period)will form a gradual slow-connect region where the fractal dimension gradually changes with the height of the fault surface. Based on the segmentation of quantitative morphology of the two fault surfaces on the Luoyunshan piedmont fault, we identified four earthquake events. Two sets of co-seismic displacement of about 3m and 1m on the fault are obtained; 3)The relationship between the fault surface morphology parameters and the time is described as follows:The fractal dimension of the limestone area decreases with the increase of the exposure time, which reflects the gradual smoothing characteristics after exposed. The phenomenon is opposite to the evolution of the geological features of gneiss faults acquired by the predecessors on the Huoshan piedmont fault; 4)Lithology plays an important role in morphology evolution of fault surface and the two opposite evolution trends of the characteristic fractal value on limestone and gneiss show that the weathering mechanism of limestone is different from that of the gneiss.  相似文献   

18.
Self-affinefractalfeaturesofearthquaketimeseriesbeforeandaftermoderateearthquakesChang-HatLIU(刘长海),Yi-GaoLIU(刘义高)andJunZHANG(...  相似文献   

19.
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a “propagating damage front” and the evolution of a third-body layer.  相似文献   

20.
Characteristics of faults and shear zones in deep mines   总被引:1,自引:0,他引:1  
The characteristics of fault and shear zones to depths of 2.5 km are well documented in deep mines in North America. The characteristics may be summarized as follows. (a) Fault zones usually are irregular, branched, anastomosed, and curved rather than simple and planar. (b) Faults are generally composed of one or more clay or clay-like gouge zones in a matrix of sheared and foliated rock bordered by highly fractured rock. (c) The widths of fault zones appear to be greater when faults have greater displacement, probably as a result of a long history of repeated minor movements. Fault zones with kilometers of displacement tend to be 100 m or more wide, whereas those with only a few hundred meters of displacement commonly are only 1 m or less wide. (d) Some zones represent shear distributed across hundreds of meters without local concentration in a narrow gouge zone. (e) Many fault zones are wet even above the water table, and water moves along them at various rates, but some also serve as subsurface dams, ponding ground water as much as several hundred meters higher on one side than on the other. No striking differences in the characteristics of faults over the vertical range of 2.5 km are documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号