首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
The chemical desorption of an adsorbed CO molecule in the vicinity of H2-forming sites on cosmic dust grains in cold dense clouds is investigated theoretically, mainly using a model based on a classical molecular dynamics computational simulation. As a model surface for icy mantles of dust grains, an amorphous water ice slab is generated at 10 K, and the first and the second H atoms are thrown on to the model surface to reproduce the recombination process of the two H atoms, H+H→H2. Then, the time and space dependence of the local temperature increase of icy mantles caused by the release of H2 formation energy in the vicinity of H2-forming sites is examined. It is found that icy mantles are heated locally up to about 30 K in the surface region at R 4 Å and about 20 K at 4 R 6 Å, where R is the distance from the H2-forming site. The critical temperature of CO desorption is estimated to be about 20–30 K under conditions in typical dense clouds, which might be seen to be comparable to the above result. However, the lifetime of local heating of icy mantles is found to be too short, compared with the time-scale of CO desorption (1013 s) and that for H2 forming in the vicinity of an adsorbed CO molecule (more than 2×1013 s). Thus, it is found that the efficiency of chemical desorption of CO on a large dust grain is negligible. On the other hand, chemical desorption can occur on a small dust grain with size less than 20 Å.  相似文献   

2.
Both laboratory measurements and theory indicate that CO2 should be a common component in interstellar ices. We show that the exact band position, width, and profile of the solid-state 12CO2 infrared bands near 3705, 3600, 2340, and 660 cm-1 (2.70, 2.78, 4.27, and 15.2 micrometers) and the 13CO2 band near 2280 cm-1 (4.39 micrometers) are dependent on the matrix in which the CO2 is frozen. Measurements of these bands in astronomical spectra can be used to determine column densities of solid-state CO2 and provide important information on the physical conditions present in the ice grains of which the CO2 is a part. Depending on the composition of the ice, the CO2 asymmetric stretching band was observed to vary from 2328.7 to 2346.0 cm-1 and have full widths at half-maxima (FWHMs) ranging from 4.7 to 29.9 cm-1. The other CO2 bands showed similar variations. Both position and width are also concentration dependent. Absorption coefficients were determined for the five CO2 bands. These were found to be temperature independent for CO2 in CO and CO2 matrices but varied slightly with temperature for CO2 in H2O-rich ices. For all five bands this variation was found to be less than 15% from 10 to 150 K, the temperature at which H2O ice sublimes. A number of parameters associated with the physical behavior of CO2 in CO2- and H2O-rich ices were also determined. The CO2-CO2 surface binding energy in pure CO2 ices is found to be (delta Hs/k) = 2690 +/- 50 K. CO2-H2O and CO-H2O surface binding energies were determined to be (delta Hs/k) = 2860 +/- 200 K and 1740 +/- 100 K, respectively. Under our experimental conditions, CO2 condenses in measurable quantities into H2O-rich ices at temperatures up to 100 K, only slightly higher than the temperature at which pure CO2 condenses. Once frozen into an H2O-rich ice, the subsequent loss of CO2 upon warming is highly dependent on concentration. For ices with H2O/CO2 > 20, the CO is physically trapped within the H2O lattice, and little CO2 is lost until the sublimation temperature of the H2O matrix is reached. In contrast, in ices having H2O/CO2 < 5, the CO2 remains only to temperatures of about 90 K. Above this point the CO2 readily diffuses out of the H2O matrix. These results suggest that two different forms of H2O lattice are produced. The implications of these data for cometary models and our understanding of cometary formation are considered.  相似文献   

3.
C18O J  = 2–1, C17O J  = 2–1 and [C  I ] 3P13P0 emission from the dense cold cloud B335 has been observed and modelled in order to determine the C/CO ratio. The observed ratio is compared with a prediction by Tarafdar who assumes a mechanism in which the CO dissociation is caused by photons of energy ∼ 13.8 eV. These were postulated by Sciama to result from the decay of dark matter neutrinos. Our value for the C/CO ratio sets an upper limit to the strength of the neutrino decay dissociation process, thus providing a significant datum for interstellar chemistry theory.  相似文献   

4.
Based on five high-resolution spectra in the range 5625–7525 ?A taken in 1995 and covering the ascending branch of the light curve from minimum to maximum, we have performed spectroscopic studies of the classical Cepheid ζ Gem. The atmospheric parameters and chemical composition of the Cepheid have been refined. The abundances of the key elements of the evolution of yellow supergiants are typical for an object that has passed the first dredge-up: a C underabundance, N, Na, and Al overabundances, and nearly solar O and Mg abundances. We have estimated [Fe/H] = +0.01 dex; the abundances of the remaining elements are also nearly solar. The metal absorption lines in all spectra show a clear asymmetry and the formation of secondary blue (B1 and B2) and red (R1 and R2) components, just as for the Cepheid X Sgr. The Hα absorption line is also split into blue (B) and red (R) components with different depths changing with pulsation phase. To analyze the velocity field in the atmosphere of ζ Gem, we have estimated the radial velocities from specially selected (with clear signatures of the B1, B2, R1, and R2 components) absorption lines (neutral atoms and ions) of metals (38 lines) and the B and R components of the Hα line. Analysis of these estimates has shown that their scatter is from ?22 to 36 km s?1 for all pulsation phases but does not exceed 35–40 km s?1 for each individual phase, while it does not exceed 22 km s?1 for the Hα line components. The radial velocity estimates for the metal lines and their B1 and B2 components have been found to depend on the depths, suggesting the presence of a velocity gradient in the atmosphere. No significant difference in velocities between the atoms and ions of the metal lines is observed, i.e., there is no significant inhomogeneity in the upper atmospheric layers of the Cepheid. Since the averaged radial velocity estimates for the cores of the metal lines and their B1 and B2 components change with pulsation phase and coincide with those for the B component of the Hα line, they are all formed in the Cepheid’s atmosphere. The formation and passage of a shock wave due to the κ-mechanism at work can be responsible for the stronger scatter of the B1 and B2 components in their velocities at phases after the Cepheid’s minimum radius. The averaged velocities of the R1 components also change with pulsation phase and differ only slightly from the remaining ones. On the other hand, the mean velocity estimate for the R component of the Hα line at all phases is +32.72 ± 2.50 km s?1 and differs significantly from the bulk of the velocities, suggesting the formation of this component in the envelope around the Cepheid. The unusual behavior of the mean velocities for the R2 components of the metal absorption lines can also point to their formation in the envelope and can be yet another indicator of its presence around ζ Gem.  相似文献   

5.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed in the mesosphere and lower thermosphere of Venus (70–120 km), have been mapped across the nightside Venus disk during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as well as Doppler wind fields (described in the companion paper, Clancy et al., 2012). Temporal sampling over the hourly, daily, weekly and interannual timescales was obtained over 2001–2009. On timescales inferred as several weeks, we observe changes between very distinctive CO and temperature nightside distributions. Retrieved nightside CO, temperature distributions for January 2006 and August 2007 observations display strong local time, latitudinal gradients consistent with early morning (2–3 am), low-to-mid latitude (0–40NS) peaks of 100–200% in CO and 20–30 K in temperature. The temperature increases are most pronounced above 100 km altitudes, whereas CO variations extend from 105 km (top altitude of retrieval) down to below 80 km in the mesosphere. In contrast, the 2004 and 2009 periods of observation display modest temperature (5–10 K) and CO (30–60%) increases, that are centered on antisolar (midnight) local times and equatorial latitudes. Doppler wind derived global (zonal and should be SSAS) circulations from the same data do not exhibit variations correlated with these CO, temperature short-term variations. However, large-scale residual wind fields not fit by the zonal, SSAS circulations are observed in concert with the strong temperature, CO gradients observed in 2006 and 2007 (Clancy et al., 2010). These short term variations in nightside CO, temperature distributions may also be related to observed nightside variations in O2 airglow (Hueso, H., Sánchez-Lavega, A., Piccioni, G., Drossart, P., Gérard, J.C., Khatuntsev, I., Zasova, L., Migliorini, A. [2008]. J. Geophys. Res. 113, E00B02. doi:10.1029/2008JE003081) and upper mesospheric SO and SO2 layers (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60).The retrieved temperature profiles also exhibit 20 K long-term (2001–2009) variations in nightside (whole disk) average mesospheric (80–95 km) temperatures, similar to 1982–1991 variations identified in previous millimeter CO line observations (Clancy et al., 1991). Global average diurnal variations in lower thermospheric temperatures and mesospheric CO abundances decreased by a factor-of-two between 2000–2002 versus 2007–2009 periods of combined dayside and nightside observations. The infrequency and still limited temporal extent of the observations make it difficult to assign specific timescales to such longer term variations, which may be associated with longer term variations observed for cloud top SO2 (Esposito, L.W., Bertaux, J.-L., Krasnopolsky, V., Moroz, V.I., Zasova, L.V. [1997]. Chemistry of lower atmosphere and clouds. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), VENUS II, 1362pp) and mesospheric water vapor (Sandor, B.J., Clancy, R.T. [2005]. Icarus 177, 129–143) abundances.  相似文献   

6.
The globular molecular cloud B335 contains a single, deeply embedded, far-infrared source. Our recent observations of H2CO and CS lines toward this source provide direct kinematic evidence for collapse. Both the intensity and detailed shape of the line profiles match those expected from inside-out collapse inside a radius of 0.036 pc. The collapse began about 1.5 × 105 years ago, similar to the onset of the outflow. The mass accretion rate is about 10 times the outflow rate, and about 0.4M should have now accumulated in the star and disk. Because B335 rotates only very slowly, any disk would still be very small (about 3 AU). The accretion luminosity should be adequate to power the observed luminosity. Consequently, we believe that B335 is indeed a collapsing protostar.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

7.
We present results of 13CO(1-0),C18O(1-0),and HCO+(1-0) map observations and N2H+(1-0) single point observations directed towards a sample of nine low-luminosity 6.7-GHz masers.N2H + line emission has been detected from six out of nine sources,C18O line emission has been detected from eight out of nine sources,and HCO + and 13CO emission has been detected in all sources.In particular,a blue profile of the HCO + spectrum,a signature of inflow,is found towards one source.From integrated intensity emission map...  相似文献   

8.
A new interstellar molecular ion, H2COH+ (protonated formaldehyde), has been detected toward Sgr B2, Orion KL, W51, and possibly in NGC 7538 and DR21(OH). Six transitions were detected in Sgr B2(M). The 1(1,0)-1(0,1) transition was detected in all sources listed above. Searches were also made toward the cold, dark clouds TMC-1 and L134N, Orion (3N, 1E), and a red giant, IRC + 10216, without success. The excitation temperatures of H2COH+ are calculated to be 60-110 K, and the column densities are on the order of 10(12)-10(14) cm-2 in Sgr B2, Orion KL, and W51. The fractional abundance of H2COH+ is on the order of 10(-11) to 10-(9), and the ratio of H2COH+ to H2CO is in the range 0.001-0.5 in these objects. The values in Orion KL seem to be consistent with the "early time" values of recent model calculations by Lee, Bettens, & Herbst, but they appear to be higher than the model values in Sgr B2 and W51 even if we take the large uncertainties of column densities of H2CO into account. We suggest production routes starting from CH3OH may play an important role in the formation of H2COH+.  相似文献   

9.
A survey of the 4(04)-3(03) and 1(01)-0(00) transitions of HOCO+ has been made toward several molecular clouds. The HOCO+ molecule was not observed in any sources except Sgr B2 and Sgr A. The 5(05)-4(04) and 4(14)-3(13) transitions were also detected toward Sgr B2. The results indicate that gas phase CO2 is not a major carbon reservoir in typical molecular clouds. In Sgr B2, the HOCO+ antenna temperature exhibits a peak approximately 2' north of the Sgr B2 central position (Sgr B2[M]) and the 4(04)-3(03) line emission is extended over a approximately 10' x 10' region. The column density of HOCO+ at the northern peak in Sgr B2 is approximately 3 x 10(14) cm-2, and the fractional abundance relative to H2 > or = 3 x 10(-10), which is about 2 orders of magnitude greater than recent predictions of quiescent cloud ion-molecule chemistry.  相似文献   

10.
The apparition of Comet C/1996 B2 (Hyakutake) offered an unexpected and rare opportunity to probe the inner atmosphere of a comet with high spatial resolution and to investigate with unprecedented sensitivity its chemical composition. We present observations of over 30 submillimeter transitions of HCN, H13CN, HNC, HNCO, CO, CH3OH, and H2CO in Comet Hyakutake carried out between 1996 March 18 and April 9 at the Caltech Submillimeter Observatory. Detections of the H13CN (4–3) and HNCO (160,16–150,15) transitions represent the first observations of these species in a comet. In addition, several other transitions, including HCN (8–7), CO (4–3), and CO (6–5) are detected for the first time in a comet as is the hyperfine structure of the HCN (4–3) line. The observed intensities of the HCN (4–3) hyperfine components indicate a line center optical depth of 0.9 ± 0.2 on March 22.5 UT. The HCN/HNC abundance ratio in Comet Hyakutake at a heliocentric distance of 1 AU is similar to that measured in the Orion extended ridge— a warm, quiescent molecular cloud. The HCN/H13CN abundance ratio implied by our observations is 34 ± 12, similar to that measured in giant molecular clouds in the galactic disk but significantly lower than the Solar System12C/13C ratio. The low HCN/H13CN abundance ratio may be in part due to contamination by an SO2line blended with the H13CN (4–3) line. In addition, chemical models suggest that the HCN/H13CN ratio can be affected by fractionation during the collapse phase of the protosolar nebula; hence a low HCN/H13CN ratio observed in a comet is not inconsistent with the solar system12C/13C isotopic ratio. The abundance of HNCO relative to water derived from our observations is (7 ± 3) × 10−4. The HCN/HNCO abundance ratio is similar to that measured in the core of Sagittarius B2 molecular cloud. Although a photo-dissociative channel of HNCO leads to CO, the CO produced by HNCO is a negligible component of cometary atmospheres. Production rates of HCN, CO, H2CO, and CH3OH are presented. Inferred molecular abundances relative to water are typical of those measured in comets at 1 AU from the Sun. The exception is CO, for which we derive a large relative abundance of 30%. The evolution of the HCN production rate between March 20 and March 30 suggests that the increased activity of the comet was the cause of the fragmentation of the nucleus. The time evolution of the H2CO emission suggests production of this species from dust grains.  相似文献   

11.
The high-latitude cloud (HLC) MBM 7 has been observed in the 21 cm H I line and the 12CO(1-0) and 13CO(1-0) lines with similar spatial resolutions. The data reveal a total mass approximately 30 M solar for MBM 7 and a complex morphology. The cloud consists of a cold dense core of 5 M solar surrounded by atomic and molecular gas with about 25 M solar, which is embedded in hotter and more diffuse H I gas. We derive a total column density N(H I + 2H2) of 1 x 10(21) cm-2 toward the center and 1 x 10(20) cm-3 toward the envelope of MBM 7. The CO line indicates the existence of dense cores [n(H2) > or = 2000 cm-3] of size (FWHM) approximately 0.5 pc. The morphology suggests shock compression from the southwest direction, which can form molecular cores along the direction perpendicular to the H I distribution. The H I cloud extends to the northeast, and the velocity gradient appears to be about 2.8 km s-1 pc-1 in this direction, which indicates a systematic outward motion which will disrupt the cloud in approximately 10(6) yr. The observed large line widths of approximately 2 km s-1 for CO suggest that turbulent motions exist in the cloud, and hydrodynamical turbulence may dominate the line broadening. Considering the energy and pressure of MBM 7, the dense cores appear not to be bound by gravity, and the whole cloud including the dense cores seem to be expanding. The distance to HLCs suggest that they belong to the galactic plane, since the scale height of the cloud is < or approximately equal to 100 pc. Compared to the more familiar dense dark clouds, HLCs may differ only in their small mass and low density, with their proximity reducing the filling factor and enhancing the contrast of the core and envelope structure.  相似文献   

12.
We present here a search for solid ethane, C2H6, on the surfaces of Pluto and Triton, based on near-infrared spectral observations in the H and K bands (1.4-2.45 μm) using the Very Large Telescope (VLT) and the United Kingdom Infrared Telescope (UKIRT). We model each surface using a radiative transfer model based on Hapke theory (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, Cambridge, UK) with three basic models: without ethane, with pure ethane, and with ethane diluted in nitrogen. On Pluto we detect weak features near 2.27, 2.405, 2.457, and 2.461 μm that match the strongest features of pure ethane. An additional feature seen at 2.317 μm is shifted to longer wavelengths than ethane by at least 0.002 μm. The strength of the features seen in the models suggests that pure ethane is limited to no more than a few percent of the surface of Pluto. On Triton, features in the H band could potentially be explained by ethane diluted in N2, however, the lack of corresponding features in the K band makes this unlikely (also noted by Quirico et al. (Quirico, E., Doute, S., Schmitt, B., de Bergh, C., Cruikshank, D.P., Owen, T.C., Geballe, T.R., Roush, T.L. [1999]. Icarus 139, 159-178)). While Cruikshank et al. (Cruikshank, D.P., Mason, R.E., Dalle Ore, C.M., Bernstein, M.P., Quirico, E., Mastrapa, R.M., Emery, J.P., Owen, T.C. [2006]. Bull. Am. Astron. Soc. 38, 518) find that the 2.406-μm feature on Triton could not be completely due to 13CO, our models show that it could not be accounted for entirely by ethane either. The multiple origin of this feature complicates constraints on the contribution of ethane for both bodies.  相似文献   

13.
The mapping observations of CO J = 2-1, CO J = 3-2, 13 CO J = 2-1 and 13 CO J = 3-2 lines in the direction of IRAS 22506+5944 have been made. The results show that the cores in the J = 2-1 transition lines have a similar morphology to those in the J = 3-2 transition lines. Bipolar molecular outflows are verified. The prior IRAS 22506+5944 observations indicated that two IRAS sources and three H 2 O masers were located close to the peak position of the core. One of the IRAS sources may be the driving source ...  相似文献   

14.
1 INTRODUCTIONFor the behavior of a molecular cloud in subsonic collision with another, Mao et al. (1992)have obtained simplified one-dimension traveling wave solutions for a plane-parallel s1ab. Chang-ing the sign in the transformation of variables in their case, we have the fOllowing results,1 rP = 2 l W op -- 1, (1)1 r =v = -- j W -- ry 1. (2)2 {V(N M)' 2z 2t -- W 1. (2)In Eq. (1), p increases with increasing t. Instability is expected to occur in strongly perturbedmolecular…  相似文献   

15.
Several interstellar molecules have been detected toward the highly perturbed B and G clouds associated with the supernova remnant IC 443 via their 3 mm transitions, including N2H+, SiO, SO, CN, HNC, and H13CO+. The (J, K) = (1, 1) and (2, 2) inversion lines of metastable ammonia have also been observed, as well as the J = 3-2 transition of HCO+ at 1.2 mm. Analysis of the (1, 1) and (2, 2) inversion lines of NH3 indicates minimum gas kinetic temperatures of TK = 70 K toward cloud B, and TK = 33 K in cloud G. Modeling of the J = 1-0 and J = 3-2 transitions of HCO+ implies densities greater than 10(5) cm-3 toward both positions. These data clearly show that hot and dense material is present in IC 443, and they suggest the presence of shocks in both regions. A careful analysis of the HCO+ lines indicates that the HCO+ abundance is at most enhanced by factors of a few over that found in cold, quiescent gas. This conclusion contradicts past claims of HCO+ abundance enhancements of several orders of magnitude in the perturbed regions. The N2H+ abundance was also found to be similar to that in cold gas, suggesting that there is no increase in ionization in the clouds. The abundances of SO and CS, as well as CN and NH3, do not appear to differ significantly from those found in cold dark clouds, although chemistry models predict sulfur-containing species to undergo high-temperature enhancements. SiO, however, is found to have an abundance in the perturbed gas 100 times larger than the upper limits observed in the dark cloud TMC 1, a result in agreement with high temperature chemistry models. In addition, the HNC/HCN ratio in both IC 443 B and G was found to be approximately 0.1--far from the ratio of 1 predicted by low-temperature ion-molecule chemistry, but similar to the values observed in clouds where elevated temperatures are present.  相似文献   

16.
大质量分子云核的CO同位素搜寻   总被引:1,自引:0,他引:1  
使用紫金山天文台 13.7 m望远镜上新安装的 SIS系统,对 64个高色指数 IRAS源和水脉泽源进行了 CO同位素13CO和 C18O J= 1-0的搜寻,并对部分源作了成图观测.结果在 64个源中全部测到了这一谱线对,而13CO的辐射一般较强,说明与稠密分子区成协,其中约60个源为首次作CO同位素谱线对巡测.用高斯拟会导出了天线温度、线心速度和谱线全半宽.对辐射强度、话线特征进行了初步分析.  相似文献   

17.
The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.  相似文献   

18.
E.L. Gibb  M.J. Mumma  M.A. DiSanti 《Icarus》2003,165(2):391-406
We detected CH4 in eight Oort cloud comets using high-dispersion (λλ∼2×104) infrared spectra acquired with CSHELL at NASA's IRTF and NIRSPEC at the W.M. Keck Observatory. The observed comets were C/1995 O1 (Hale-Bopp), C/1996 B2 (Hyakutake), C/1999 H1 (Lee), C/1999 T1 (McNaught-Hartley), C/1999 S4 (LINEAR), C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), and 153/P Ikeya-Zhang (C/2002 C1). We detected the R0 and R1 lines of the ν3 vibrational band of CH4 near 3.3 μm in each comet, with the exception of McNaught-Hartley where only the R0 line was measured. In order to obtain production rates, a fluorescence model has been developed for this band of CH4. We report g-factors for the R0 and R1 transitions at several rotational temperatures typically found in comet comae and relevant to our observations. Using g-factors appropriate to Trot as determined from HCN, CO and/or H2O and C2H6, CH4 production rates and mixing ratios are presented. Abundances of CH4/H2O are compared among our existing sample of comets, in the context of establishing their place of origin. In addition, CH4 is compared to native CO, another hypervolatile species, and no correlation is found among the comets observed.  相似文献   

19.
An ASCA observation of the Jovian impact of the comet Shoemaker-Levy 9 is reported. Four impacts of H, L, Q1 and R were observed and four impacts of B, C, G, and Q2 were observed within 60 minutes after their impacts. No significant flaring of X-ray emission was observed. Upper limit X-ray fluxes of 90 % confidence level, averaged 5 minutes just after the impacts, were 2.4 × 10–13 erg sec–1 cm–2, 3.5 × 10–13 erg sec–1 cm–2, 1.6 × 10–13 erg sec–1 cm–2 and 2.9 × 10–13 erg sec–1 cm–2 for the impacts of H, L, Q1 and R, respectively, in the 0.5(0.7 for H and Q1)–10 keV energy range. However, a hint of X-ray enhancement around Jupiter from July 17 to July 19 was detected with about 2 6 × 10–14 erg sec–1 cm–2 in the 0.5–10 keV energy range.  相似文献   

20.
The J = 2-1 transition of SiO has been searched for toward both hot and cold molecular gas. SiO was not detected toward the dark clouds TMC-1, L134 N, and B335, down to column density upper limits of N < 2-4 x 10(10) cm-2. The species, however, has been observed toward all sources with a kinetic temperature greater than or equal to 30 K, with the largest column densities (N approximately 10(13)-10(17) cm-2) measured in the warmest (TK > or = 100 K) material. The abundance of SiO, relative to HCN, is found to be approximately 0.1-1 in the massive star-forming regions toward Orion and NGC 7538; toward the dark clouds, the upper limits to this ratio is less than 0.0002-0.004. A similar enhancement in the warmer regions is reflected in the SiO/H2 ratio as well. A linear relation was found between the natural log of the SiO concentration and 1/TK, suggesting that the species' formation involves a chemically specific process that contains an activation barrier of approximately 90 K. SiO was also found to be underabundant with respect to SO in cold clouds, with SiO/SO < 1/1000, versus SiO/SO > or =, measured in Orion-KL. The formation of SiO is therefore linked closely to the local gas kinetic temperature, rather than the oxygen abundance, and its synthesis is likely to involve high-temperature gas-phase reactions. The species thus may serve as an unambiguous indicator of high-temperature or "shock" chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号