首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The EPA Meteorological Wind Tunnel was used to examine the flow field in and around models of open-top field-plant growth chambers used to assess the effects of pollutant gases on plant growth. Baffles designed to reduce the ingress of ambient air into the chamber through the open top were tested; the mean flow and turbulence in the simulated boundary layer with and without the chambers were compared (the chamber was operated with and without the pollutant flow system on); and the effects of surrounding chambers on the concentration field were measured. Results showed that a baffle with a reduced opening vertically above the test area maintained the highest uniform concentration in the test area. The major differences between the three (no chamber and the chamber with flow on and off) mean velocity profiles occurred below z/h = 2.0 (h is chamber height) and at z/h ≤ 4.2. The three Reynolds stress profiles were similar above z/h = 2.0. Downwind of the chamber, the Reynolds stresses in the on-mode were greater than those in the off-mode above z/h = 1.1. The reverse was true below that point. Both longitudinal and vertical intensities above and downwind of the chamber were greater with the mixture flow system on rather than off, below about z/h < 1.5. Lateral variations in the mean wind indicated that the mean velocity was greater with the mixture flow system on except near the centerline where the reverse was true. The concentrations in the downwind wake resembled those for a cube. The location of a cylinder within a regular array had some effect on its internal gas concentration. Locations near the upwind and downwind edges of the array were associated with lower concentrations, although for all locations the highest internal values were always found at the lowest portion of the upwind wall. With active cylinders downwind, the gas plume emitted from a source cylinder at the windward edge of the array was forced 0.5 h higher and the centerline meandered laterally when compared with the single-cylinder case. A cylinder located at z/h = 1.0 downwind from a source cylinder received approximately 3%; of the concentration input to the source, or roughly 10%; of the actual concentration within the source cylinder.  相似文献   

2.
Experimental studies have shown that tracers injected over short time intervals can often be measured downwind near the ground for a much longer time than would be expected considering the duration of the release and the wind speed. A two-dimensional advection-diffusion model was used in a numerical study to investigate this effect. The results from the numerical study showed that the rate of decrease in concentrations downwind at a receptor after a source has stopped emitting was more sensitive to magnitude of the wind speed and alongwind mixing coefficient than the rate of increase in concentrations when the source first starts emitting. The lower the wind speed or the greater the mixing, the more slowly the concentration decreased as the region upwind of the receptor continued to contribute tracer until it was depleted by advection and vertical diffusion. These atmospheric processes are able, qualitatively, to account for the slowly decreasing air concentrations.  相似文献   

3.
4.
The mean wind field and the wind fluctuations observed near a controlled, heavily traveled level roadway were investigated. The mean wind field was studied in terms of velocity defects relative to the ambient mean wind. The wind fluctuations were studied in terms of energy spectra, velocity cross-spectra, excesses of velocity variances and cross-covariances over their ambient values. Two-point cross-spectra and correlations were also used to study the propagation of wind fluctuations. The influence of traffic on the ambient wind field extended vertically up to at least 4.5m above ground, and horizontally to at least 30 m downwind of the road. The vertical extension was more gradual at high cross-road winds than at low cross-road winds. The wind tended to move up as it approached the road and down as it left the road, except when the cross-road wind was low, where the downward motion was reduced or reversed. This is likely due to the buoyancy effect of the heated exhaust. The traffic effects propagated outward at about 1 m s-1. Thus at cross-road winds of less than 1 ms-1, the influence of traffic could be observed upwind of the road. When intense shear existed between the local wind field and an opposing traffic direction, large turbulent energy production resulted, generating large eddies, in additions to the high frequency (> 0.1 Hz) eddies generated by vehicular motions in the absence of intense shear. The large eddies also increased the mixing volume, so that when the ambient wind opposed the traffic direction on the upwind lanes, the pollutant concentration upwind of the road could be higher than that downwind. While the cross-covariance excesses generally agreed with the gradient transport assumption, disagreements also existed, which may not be surprising in view of the participation of large eddies in the momentum transport.  相似文献   

5.
Large-eddy simulations are conducted to investigate the effects of the incoming turbulent structure of the flow on pollutant removal from an ideal canyon. The target canyon is a two-dimensional street canyon with an aspect ratio of 1.0 (building height to street width). Three turbulent flows upwind of the street canyon are generated by using different block configurations, and a tracer gas is released as a ground-level line source at the centre of the canyon floor. Mean velocity profiles for the three flows are similar, except near the roof. However, the root-mean-square values of the velocity fluctuations and the Reynolds shear stress increase with the friction velocity of the incoming turbulent flow. The spatially-averaged concentration within the canyon decreases with increasing friction velocity. Coherent structures of low-momentum fluid, generated above the upwind block configurations, contribute to pollutant removal, and the amount of pollutant removal is directly related to the size of the coherent structure.  相似文献   

6.
7.
We have measured profiles of an onshore wind 200 m upwind and 200 m downwind from an abruptly rising shore using a remote-sensing Doppler lidar anemometer. Data were taken at heights between 4.7 and 66.5 m above sea level. Results show that the onshore velocity vector slopes upward 16.6 to 9.6°, the amount depending on the height of measurement, due to the combined effects of a 1.7-m high bluff shoreline and the frictionally decelerated flow over land. The profile 200 m inland has the expected deceleration at lower levels because of increased surface roughness and implies a velocity vector at 66.5 m height with an upward slope of approximately 18° (2.6 m s-1 upward component, 8.4 m s-1 vector magnitude), an acceleration to 0.3 m s-1 greater than the upwind value, or a combination of both effects. All three options are consistent with mass continuity. The experiment exhibits the usefulness and limitations of a backscatter Doppler lidar for boundary-layer profile measurements in a horizontally inhomogeneous environment.  相似文献   

8.
为研究机动车辆排出的污染物在大气中的扩散规律,在北京做了小风条件下的街谷示踪试验。当楼顶风速u接近或大于1米/秒时,街谷内可形成一稳定的原生涡;u<0.6米/秒时原生涡将消失。对于楼之间空间较小的街谷,背风面和迎风面的示踪剂浓度平均比值可达8。浓度值沿楼层高度无明显变化;由于快车路旁松墙的阻挡和抬升作用,可能造成沿高度方向楼层中段的浓度偏高。在街谷外,除下风方路面上有一按下风距离的负幂指数衰减的浓度分布外,上风方路面上也有一按较大负幂指数衰减的分布。根据上述试验,给出了用以预测街谷中机动车辆排出的惰性气体污染物的扩散模式;模式中,对原生涡和小尺度湍流,做了分别处理。  相似文献   

9.
A simple new model is proposed to predict the distribution of wind velocity and surface shear stress downwind of a rough-to-smooth surface transition. The wind velocity is estimated as a weighted average between two limiting logarithmic profiles: the first log law, which is recovered above the internal boundary-layer height, corresponds to the upwind velocity profile; the second log law is adjusted to the downwind aerodynamic roughness and local surface shear stress, and it is recovered near the surface, in the equilibrium sublayer. The proposed non-linear form of the weighting factor is equal to ln(z/z 01)/ln(δ i /z 01), where z, δ i and z 01 are the elevation of the prediction location, the internal boundary-layer height at that downwind distance, and the upwind surface roughness, respectively. Unlike other simple analytical models, the new model does not rely on the assumption of a constant or linear distribution for the turbulent shear stress within the internal boundary layer. The performance of the new model is tested with wind-tunnel measurements and also with the field data of Bradley. Compared with other existing analytical models, the proposed model shows improved predictions of both surface shear stress and velocity distributions at different positions downwind of the transition.  相似文献   

10.
The Asian dust forecasting model, Mongolian Asian Dust Aerosol Model (MGLADAM), has been operated by the National Agency for Meteorology and Environmental Monitoring of Mongolia since 2010, for the forecast of Asian dust storms. In order to evaluate the performance of the dust prediction model, we simulated Asian dust events for the period of spring 2011. Simulated features were compared with observations from two sites in the dust source region of the Gobi desert in Mongolia, and in the downstream region in Korea. It was found that the simulated wind speed and friction velocity showed a good correlation with observations at the Erdene site (one of the sites in the Gobi desert). The results show that the model is proficient in the simulation of dust concentrations that are within the same order of magnitude and have similar start and end times, compared with PM10 observed at two monitoring sites in the Gobi regions. Root Mean Square Error (RMSE) of the dust simulation ranges up to 200 μg m?3 because of the high concentrations in source regions, which is three times higher than that in the downstream region. However, the spatial pattern of dust concentration matches well with dust reports from synoptic observation. In the downwind regions, it was found that the model simluated all reported dust cases successfully. It was also found that the RMSE in the downwind region increased when the model integration time increased, but that in the source regions did not show consistent change. It suggests that MGLADAM has the potential to be used as an operational dust forecasting model for predicting major dust events over the dust source regions as well as predicting transported dust concentrations over the downstream region. However, it is thought that further improvement in the emission estimation is necessary, including accurate predictions in surface and boundary layer meteorology. In the downwind regions, background PM10 concentration is considerably affected by other aerosol species, suggesting that a consideration of anthropogenic pollutants will be required for accurate dust forecasting.  相似文献   

11.
This paper reports on measurements of sensible and latent heat and CO2 fluxes made over an irrigated potato field, growing next to a patch of desert. The study was conducted using two eddy correlation systems. One measurement system was located within the equilibrium boundary layer 800 m downwind from the edge of the potato field. The other measurement system was mobile and was placed at various downwind positions to probe the horizontal transition of vertical scalar fluxes. Latent (LE) and sensible (H) heat fluxes, measured at 4 m above the surface, exhibited marked variations with downwind distance over the field. Only after the fetch to height ratio exceeded 75 to 1 didLE andH become invariant with downwind distance. When latent and sensible heat fluxes were measured upwind of this threshold, significant advection of humidity-deficit occurred, causing a vertical flux divergence ofH andLE.The measured fluxes of momentum, heat, and moisture were compared with predictions from a second-order closure two-dimensional atmospheric boundary layer model. There is good agreement between measurements and model predictions. A soil-plant-atmosphere model was used to examine nonlinear feedbacks between humidity-deficits, stomatal conductance and evaporation. Data interpretation with this model revealed that the advection of hot dry air did not enhance surface evaporation rates near the upwind edge of the potato field, because of negative feedbacks among stomatal conductance, humidity-deficits, andLE. This finding is consistent with results from several recent studies.  相似文献   

12.
Large-eddy simulations were conducted to investigate the mechanism of pollutant removal from a three-dimensional street canyon. Five block configurations with aspect ratios (building height to length) of 1, 2, 4, 8 and $\infty $ were used to create an urban-like array. A pollutant was released from a ground-level line source at the centre of the target canyon floor. For smaller aspect ratios, the relative contribution of the turbulent mass flux to net mass flux at the roof level, which was spatially averaged along the roof-level ventilation area, was closer to unity, indicating that turbulent motions mainly affected pollutant removal from the top of the canyon. As aspect ratio increased, the relative contribution became smaller, owing to strong upwind motions. However, the relative contribution again reached near unity for the infinite aspect ratio (i.e. a two-dimensional street canyon) because of lowered lateral flow convergence. At least 75 % of total emissions from the three-dimensional street canyon were attributable to turbulent motions. Pollutant removal by turbulent motions was related to the coherent structures of low-momentum fluid above the canyons. Though the coherent structure size of the low-momentum fluid differed, the positions of low-momentum fluid largely corresponded to instantaneous high concentrations of pollutant above the target canyon, irrespective of canyon geometry.  相似文献   

13.
Direct numerical simulation is used to investigate the interference arising from the dispersion of passive scalar plumes released from a pair of point sources in a fully-developed wall-bounded shear flow. Four different lateral separations of the two sources for both near ground-level and elevated releases are considered. The downwind evolution of the correlation between the plume concentrations along the centreline between the two sources and the behaviour of the lateral profiles of the correlation at various locations downwind of the two sources are examined in detail. Differences in the exceedance probability over a high concentration level for a single plume and the total plume are highlighted and studied, and the effects of destructive and constructive interferences on the exceedance probabilities for the total plume are used to explain these differences. One significant result is that all higher-order (third-order and above) moments of the total concentration can be inferred from the application of a clipped-gamma distribution using the information embodied in only the first- and second-order concentration moments of each single plume, and in the cross-correlation coefficient of the instantaneous concentration of the two plumes.  相似文献   

14.
Field Evidence for the Upwind Velocity Shift at the Crest of Low Dunes   总被引:1,自引:0,他引:1  
Flow that is topographically forced by hills and sand dunes accelerates on the upwind (stoss) slopes and reduces on the downwind (lee) slopes. This secondary wind regime, however, possesses a subtle effect, reported here for the first time from field measurements of near-surface wind velocity over a low dune: the wind velocity close to the surface reaches its maximum upwind of the crest. Our field measurements show that this upwind phase shift of velocity with respect to topography is found to be in quantitative agreement with the prediction of hydrodynamical linear analysis for turbulent flows with first-order closures. This effect, together with sand transport spatial relaxation, is at the origin of the mechanisms of dune initiation, instability and growth.  相似文献   

15.
Using a computational fluid dynamics(CFD)model,the effects of street-bottom and building-roof heating on flow in three-dimensional street canyons are investigated.The building and street-canyon aspect ratios are one.In the presence of street-bottom heating,as the street-bottom heating intensity increases,the mean kinetic energy increases in the spanwise street canyon formed by the upwind and downwind buildings but decreases in the lower region of the streamwise street canyon.The increase in momentum due to buoyancy force intensifies mechanically induced flow in the spanwise street canyon.The vorticity in the spanwise street canyon strengthens.The temperature increase is not large because relatively cold above-roof-level air comes into the spanwise street canyon.In the presence of both street-bottom and building-roof heating,the mean kinetic energy rather decreases in the spanwise street canyon.This is caused by the decrease in horizontal flow speed at the roof level,which results in the weakening of the mean flow circulation in the spanwise street canyon.It is found that the vorticity in the spanwise street canyon weakens.The temperature increase is relatively large compared with that in the street-bottom heating case,because relatively warm above-roof-level air comes into the spanwise street canyon.  相似文献   

16.
缪群 《大气科学进展》2013,30(4):1025-1038
Data from in situ probes and a vertically-pointing mm-wave Doppler radar aboard a research aircraft are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. A previous study (Geerts et al., 2010) has shown that radar reflectivity tends to be higher during seeding periods in a shallow layer above the ground downwind of ground-based silver iodide (AgI) nuclei generators. This finding is based on seven flights, conducted over a mountain in Wyoming (the Unites States), each with a no-seeding period followed by a seeding period. In order to assess this impact, geographically fixed flight tracks were flown over a target mountain, both upwind and downwind of the AgI generators. This paper examines data from the same flights for further evidence of the cloud seeding impact. Composite radar data show that the low-level reflectivity increase is best defined upwind of the mountain crest and downwind of the point where the cloud base intersects the terrain. The main argument that this increase can be attributed to AgI seeding is that it is confined to a shallow layer near the ground where the flow is turbulent. Yet during two flights when clouds were cumuliform and coherent updrafts to flight level were recorded by the radar, the seeding impact was evident in the flight-level updrafts (about 610 m above the mountain peak) as a significant increase in the ice crystal concentration in all size bins. The seeding effect appears short-lived as it is not apparent just downwind of the crest.  相似文献   

17.
We used wind-tunnel experiments to investigate velocity-field adjustment and scalar diffusion behaviour in and above urban canopies located downwind of various roughness elements. Staggered arrays of rectangular blocks of various heights H and plan area ratios λp were used to model the urban canopies. The velocity field in the roughness sublayer (height \({z \lesssim 2H}\)) reached equilibrium at distances proportional to \({\sqrt{L_{\rm c}H}}\) where L c is the canopy-drag length scale determined as a function of λp and the block side length L. A distance of about \({20\sqrt{L_{\rm c}H}}\) was required for adjustment at z = H/2 (in the canopy), and a distance of about \({10\sqrt{L_{\rm c}H}}\) was required at z = 2H (near the top of the roughness sublayer). Diffusion experiments from a ground emission source revealed that differences in upwind roughness conditions had negligible effects on the plume growth near the source (up to a few multiples of L from the source) if the source was located at a fetch F larger than about \({10\sqrt{L_{\rm c}H}}\) from the upwind edge of the canopy. However, at locations farther downwind (more than several multiples of L from the source), upwind conditions had considerable effects on the plume growth. For a representative urban canopy, it was shown that a much larger fetch than required for velocity-field adjustment in the roughness sublayer was necessary to eliminate the effects of upwind conditions on plume widths at 24L downwind from the source.  相似文献   

18.
This paper presents a new model of concentration fluctuations for neutrally buoyant gas clouds dispersing in a wind tunnel. It is derived from a series of exact results, which apply in the hypothetical case when there is no molecular diffusion, coupled with a probability density function model previously used to describe steady releases of contaminant. A simple self-similar relationship between the evolution of the concentration intensity and mean is established. As a first step the time independent variant of the model, applicable to a continuous plume, is tested against some previously published experimental data for steady wind-tunnel releases. Comparisons of experimental results and model predictions at different downwind positions, heights and source geometry are presented. Then, the results for the time dependent model, applicable to instantaneous releases, are discussed. The experimental evidence presented here supports the self-similar relationship established earlier. The implications for modelling higher moments of concentration and the fixed point probability density function are investigated.  相似文献   

19.
Surface-layer aerosol diffusion experiments have been conducted using artificial smoke plume releases at ground level over flat and homogeneously vegetated terrain at the Meppen proving grounds in the Federal Republic of Germany (1989). At fixed downwind locations in the range out to 800 m from the source, instantaneous crosswind plume profiles were detected repetitively at high spatial (1.5 m) and temporal (3 sec) intervals by use of a mini LIDAR system. The experiments were accompanied by measurement of the surface-layer mean wind and turbulence quantities by sonic anemometers. On the basis of measured crosswind concentration profiles, the following statistics were obtained: 1) Mean profile, 2) Root mean square profile, 3) Fluctuation intensities, and 4) Intermittency factors. Furthermore, some experimentally determined probability density functions (pdf's) of the fluctuations are presented. All the measured statistics are referred to a fixed and a moving frame of reference, the latter being defined as a frame of reference from which the (low frequency) plume meander is removed. Finally, the measured statistics are compared with statistics on concentration fluctuations obtained with a simple puff diffusion model (RIMPUFF) developed at Risø.  相似文献   

20.
The effects of source size on plume behaviour have been examined in a 1.2 m wind tunnel boundary layer for isokinetic sources with diameters from 3 to 35 mm at source heights of 230 mm and at ground level. Experimental measurements of mean concentration and the variance, intermittency and probability density functions of the concentration fluctuations were obtained. In addition, a fluctuating Gaussian plume model is presented which reproduces many of the observed features of the elevated emission. The mean plume width becomes independent of source size much more rapidly than the instantaneous plume width. Since it is the meandering of the instantaneous plume which generates most of the concentration fluctuations near the source, these are also dependent on source size. The flux of variance in the plume reaches a maximum, whose value is greatest for the smallest source size, close to the source and thereafter is monotonically decreasing. The intermittency factor reaches a minimum, whose value is lowest for the smallest source, and increases back towards one. Concentration fluctuations for the ground-level source are much less dependent on source size due to the effects of the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号