首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of drizzle on ZM relationships in warm clouds   总被引:1,自引:0,他引:1  
This paper addresses the sensitivity of the relationships between radar reflectivity (Z) and liquid water content (M) for liquid water clouds to microphysical drizzle parameters by means of simulated radar observation at a frequency of 3 GHz of modeled cumulus clouds. A power law relationship for non drizzling clouds with water content as high as 3 gm− 3: Zc = 0.026 Mc1.61 is numerically derived and agreed with previous empirical relationships relative to cumulus and stratocumulus. This relationship is then used to explore the influence of drizzle on the correlation between radar reflectively and water content. Due to their large diameters with respect to cloud droplets, drizzle sized drops dominate radar reflectivity but do not carry the cloud water content so that reflectivity and liquid water content are expected to be not correlated in clouds containing drizzle. It is shown that for congestus or extreme congestus cumuli, microphysical conditions for which the ZcMc relationship can be used with a tolerance of 5 and 10% are provided whereas for humilis or mediocris cumuli, the presence of drizzle breaks down the ZcMc relationship whatever the situations.  相似文献   

2.
Measurements of natural ice nuclei with a continuous flow diffusion chamber   总被引:1,自引:0,他引:1  
Measurements of natural ice nuclei were made in winter continental airmasses with a continuous flow thermal gradient diffusion chamber (described in a separate paper). Over the range of temperatures −7°C to −20°C, the concentration of ice nuclei was closely related to ice supersaturation (SSi) for humidities both below and above water saturation. Measurements below water saturation were interpreted as deposition nuclei with average concentrations (per liter) approximately 0.32 SSi(%)0.81. Measurements were made up to 5% above water saturation and activated both deposition and condensation-freezing nuclei. The average concentration of condensation-freezing nuclei was 0.25 e−0.15 T(°C). Sample residence time in the chamber was probably too small to detect contact nuclei, unless the nucleating aerosols are extremely small. There was large variability in nucleus concentrations, as much as two orders of magnitude at −15°C. Comparisons are made between these ice nuclei measurements and aircraft observations of ice crystal concentrations in winter orographic clouds.  相似文献   

3.
Among anthropogenic perturbations of the Earths atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day–1 decade–1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative.  相似文献   

4.
Physical experiments designed to explore the potential of rain augmentation through airborne glaciogenic seeding on small, isolated non-precipitating cumuliform clouds near Red Deer, Alberta were carried out during the period 1982–1985. The microstructure of 90 cumulus congestus clouds have been documented through repeated in-situ sampling using a cloud physics instrumented aircraft platform. Observations from the inspection passes of 57 clouds seeded with either dry ice pellets or silver iodide pyrotechnics, and all the passes of 33 natural clouds are presented.Measurements of the cloud droplet concentration indicate that Alberta cumulus clouds are typically continental in nature, with an average droplet concentration of 535 cm−3 and an average droplet diameter of 10.6 μm. Alberta clouds have average liquid water contents of 0.57 g m−3, with a peak 1-sec value of 3.17 g m−3. The 1-km average liquid water contents are 0.83 g m−3, with a peak value of 2.81 g m−3. Cloud lifetimes vary between 11 and 20 minutes. Concentrations of naturally occurring ice crystals are found to be low. The average maximum 1-km ice concentration was 31−1, and the peak 1-km concentration was 73.11−1 in the natural cloud dataset. Evidence of precipitation-sized particles was detected in 21% (7 of 33) of the clouds, and precipitation below cloud base was detected in 6% (2 of 33) of the clouds.A comparison of the Alberta cloud characteristics to the cumulus clouds from different locations showed that there are some distinct differences between Alberta clouds and the clouds from the other regions.  相似文献   

5.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

6.
Aqueous concentrations of ionic species observed in cloud water studies often have been in conflict with expectations from model predictions. These inconsistencies result from the size-dependent chemical composition of cloud drops during different stages in the lifetime of a cloud. To study this phenomenon, droplets of clouds need to be collected in different size ranges with high resolution in space and time. The only possibility for this kind of study is the use of an aircraft. Therefore, during the last several years, an attempt was made to develop a mobile cascade impactor, which can be installed outside an aircraft. The cloud water sampled in different size fractions can be transferred into the interior of the aircraft during the measuring flight. The collector is able to sample two size fractions. For continental clouds, the cutoffs are chosen to be >5 and >13.5 μm in diameter. For maritime clouds, the cutoff for the first stage could be shifted to 18.6 μm by lowering the nozzle speed. Prior to field application, the collector was characterized with the aid of “calibration fogs” produced in the laboratory with different drop sizes and different chemical compositions. The characterization included the examination of the cutoffs and the reliability of the sampling procedure with regard to the subsequent chemical analysis. With a collection period of 2 min, collection rates in the order of 0.1–1 cm3 min−1 can be obtained. The collector characterized in this manner was successfully used during measuring flights in clouds over northern Germany. Preliminary concentrations of NH4+, SO42− and Cl found in the two size fractions of the cloud drops are presented.  相似文献   

7.
In this paper, the basic composition of fog and low cloud water are presented, resulting from the analyses of water samples from 111 fog/cloud events. The samples were collected at five sites located in various regions of the Czech Republic. Two sampling sites are in mountainous regions and three sites represent various urban areas. The mountain stations are located in two regions of the Czech Republic with different industry types. At all the sites, active fog collectors were employed. In the water samples, the conductivity, acidity (pH), cations (H+, Na+, K+, NH4+, Mg2+, Ca2+) and anions (F, Cl, NO3, SO42−) were determined.A mean pH value of about 4.5 was obtained at mountain sites whereas the measurements in urban areas showed mean pH values from 4.9 to 6.4. The mean conductivity values in the samples from the two mountain stations were 137 and 191.5 μS cm−1. The samples from urban sites showed mean values between 127.7 and 654.4 μS cm−1. The maximum concentration means for the three dominant pollutants (expressed by the ratio mountain sites/urban sites) are 32.9/99.6 mg l−1 for NO3, 32.5/192.9 mg l−1 for SO42− and 18.5/52.7 mg l−1 for NH4+. As expected, we found higher ion concentrations in the northern part of the Czech Republic where larger numbers of lignite-burning power plants, chemical factories and opencast lignite mines are located. A decrease in ion concentrations was observed at higher altitude sites, probably reflecting at least in part higher liquid water contents at these locations.  相似文献   

8.
In November 1993 an airborne field study was performed in order to investigate the microphysical and radiative properties of cooling tower water clouds initiated by water vapour emissions and polluted by the exhaust from coal-fired power plants. The number-median diameter of the droplet size distributions of these artificial clouds was in the range of 13 μm. The concentration of smaller droplets (diameters dD < 10 μm) increased with height and horizontal distance from the cooling towers. Close to the cooling towers, bimodal spectra were found with a second mode at 19 μm. The liquid water content (LWC) ranged between 2 and 5 g/m3 and effective droplet radii (Re) between 6 and 9 μm were measured. LWC and Re decreased with altitude, whereas the droplet concentration (ND) remained approximately constant (about 2000 cm−3 ). An enrichment of interstitial aerosol particles with particle diameters (dp) smaller 0.2 μm compared to the power plant plume in the vicinity of the clouds was observed. Particle activation for dm > 0.3 μm. was evident, especially in cooling tower clouds further apart and separated from their sources. Furthermore, radiation measurements were performed, which revealed differences in the vertical profiles of downwelling solar and UV radiation flux densities inside the clouds.The effective droplet radius Re was parameterized in terms of LWC and ND using equations known from literature. The close agreement between measured and parameterized Re indicates a similar coupling of Re, LWC and ND as in natural clouds.By means of Mie calculations, volume scattering coefficients and asymmetry factors are derived for both the cloud droplets and the aerosol particles. For the cloud droplets, the optical parameters were described by parameterizations from the literature. The results show, that the link between radiative and microphysical properties of natural clouds is not changed by the extreme pollution of the artificial clouds.  相似文献   

9.
《Atmospheric Research》2008,87(3-4):297-314
This paper addresses the sensitivity of the relationships between radar reflectivity (Z) and liquid water content (M) for liquid water clouds to microphysical drizzle parameters by means of simulated radar observation at a frequency of 3 GHz of modeled cumulus clouds. A power law relationship for non drizzling clouds with water content as high as 3 gm 3: Zc = 0.026 Mc1.61 is numerically derived and agreed with previous empirical relationships relative to cumulus and stratocumulus. This relationship is then used to explore the influence of drizzle on the correlation between radar reflectively and water content. Due to their large diameters with respect to cloud droplets, drizzle sized drops dominate radar reflectivity but do not carry the cloud water content so that reflectivity and liquid water content are expected to be not correlated in clouds containing drizzle. It is shown that for congestus or extreme congestus cumuli, microphysical conditions for which the ZcMc relationship can be used with a tolerance of 5 and 10% are provided whereas for humilis or mediocris cumuli, the presence of drizzle breaks down the ZcMc relationship whatever the situations.  相似文献   

10.
In this study bulk airborne aerosol composition measured by the PILS-IC (integration time of 3 min 24 s) during TRACE-P P3B Flight 10 are used to investigate the ionic chemical composition and mixing state of biomass burning particles. A biomass burning plume, roughly 3–4 days old, moderately influenced by urban pollution aerosols recorded in the Philippine Sea is investigated. Focusing on the fine particle NO3, SO42−, K+, NH4+, and water-soluble organics, the observed correlations and nearly 1-to-1 molar ratios between K+ and NO3 and between NH4+ and (SO42−+ inferred Organics) suggest the presence of fine-mode KNO3, (NH4)2SO4, and NH4(Organics) aerosols. Under the assumption that these ion pairs existed, and because KNO3 is thermodynamically less favored than K2SO4 in a mixture of NO3, SO42−, K+, NH4+, and Organic anions, the measurements suggest that aerosols could be composed of biomass burning particles (KNO3) mixed to a large degree externally with the (NH4)2SO4 aerosols. A “closed-mode” thermodynamic aerosol simulation predicts that a degree of external mixing (by SO42− mass) of 60 to 100% is necessary to achieve the observed ionic associations in terms of the existence of KNO3. However, the degree of external mixing is most likely larger than 90%, based on both the presence of KNO3 and the amounts of NH4NO3. Calculations are also shown that the aerosol mixing state significantly impacts particle growth by water condensation/evaporation. In the case of P3B Flight #10, the internal mixture is generally more hygroscopic than the external mixture. This method for estimating particle mixing state from bulk aerosol data is less definitive than single particle analysis, but because the data are quantitative, it may provide a complementary method to single particle chemical analysis.  相似文献   

11.
Based on 1-year cloud measurements with radar and microwave radiometer broadband solar radiative transfer simulations were performed to quantify the impact of different ice crystal shapes of Arctic mixed-phase clouds on their radiative properties (reflectance, transmittance and absorptance). The ice crystal shape effects were investigated as a function of microphysical cloud properties (ice volume fraction fi, ice and liquid water content IWC and LWC, mean particle diameter DmI and DmW of ice/water particle number size distributions, NSDs).The required NSDs were statistically derived from radar data. The NSD was composed of a liquid and a solid mode defined by LWC, DmW (water mode) and IWC, DmI (ice mode). It was found that the ratio of DmI and DmW determines the magnitude of the shape effect. For mixed-phase clouds with DmI ≤ 27 μm a significant shape effect was obtained. The shape effect was almost insensitive with regard to the solar zenith angle, but highly sensitive to the ice volume fraction of the mixed-phase cloud. For mixed-phase clouds containing small ice crystals (DmI ≤ 27 μm) and high ice volume fractions (fi > 0.5) crystal shape is crucial. The largest shape effects were observed assuming aggregates and columns. If the IWC was conserved the shape effect reaches values up to 0.23 in cloud reflectance and transmittance. If the ice mode NSD was kept constant only a small shape effect was quantified (≤ 0.04).  相似文献   

12.
The apportionment of atmospheric aerosols undertaken in Northern France during two sampling campaigns allowed to determine the influence of the atmospheric contribution of a heavy industrialized urban center on the particulate matter composition at a nearby rural site. The concentrations of major components and trace elements sampled by bulk filtration have been determined on June–July 2000 and January–February 2001, and the comparison of these two campaigns shows very well the importance of wind directions. The sources of 10 trace elements (Al, Ba, Cu, Fe, K, Mn, Pb, Sr, Ti and Zn) and 7 major components (Cl, NO3, SO42−, NH4+, Na, Mg and Ca) are better identified by studying their elemental contribution at each sampling site according to wind sectors. This kind of study shows that the concentrations recorded at the urban sampling site are always higher than those observed at the rural site as well during the summer campaign (about + 35%) as during the winter campaign (+ 90%), because of the predominance of the W–NW wind sector, corresponding to the influence of the urban and industrialized areas.  相似文献   

13.
14.
A total of 48 precipitation samples have been collected from individual precipitation events at the Nam Co Monitoring and Research Station for Multisphere Interactions (Nam Co Station, 30°47′N, 90°58′E; 4730 m a.s.l) located in the central Tibetan Plateau from August 2005 to August 2006. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, NO3 and SO42−), conductivity and pH. Precipitation pH values ranged from 6.03 to 7.38 with an average value of 6.59. The high pH is due to large inputs of crustal aerosols in the atmosphere, which contain a large fraction of carbonate. Ca2+ is the dominant cation in precipitation with an average value of 65.58 μeq L− 1 (4.91–301.41 μeq L− 1), accounting for 54% of the total cations in precipitation. HCO3 is the predominant anion, accounting for 62% of the total anions. When compared with data from a snow pit in the Zhadang Glacier 50 km away (5800 m a.s.l), major ion concentration in precipitation at the Nam Co Station is much higher due to local aerosol inputs. Correlation and empirical orthogonal function (EOF) analysis indicate that regional crustal aerosols and species from combustion emissions of residents are the major sources for these ions, lake salt aerosols from the Nam Co nearby and regional mineral aerosols from dry lake sediments are secondary sources, and sea salt contribution is the least due to the long distance transport.  相似文献   

15.
For investigating the physical reasons for the observed increase in rainfall, field observational programmes have been undertaken in the upwind and downwind of industrial complexes of the Bombay region. During these programmes, surface observations of trace gases ( SO2 and NOx), giant size hygroscopic and nonhygroscopic aerosols and rain water samples have been made in the years 1972, 1973 and 1974. Aircraft observations of trace gases (SO2 and NH3), giant size aerosols, cloud condensation nuclei as well as of cloud liquid water content, cloud droplet spectra and temperature have been made on limited days during August 1974. Results of the analysis of the surface and aircraft observations have indicated that the chemical, thermal and microphysical conditions of clouds are markedly different in the upwind and downwind regions of the industrial complexes in the Bombay region. It is hypothesised that observed increase in rainfall in the region following the industrialisation is due to the differences in the chemical and physical conditions in the downwind clouds.  相似文献   

16.
Measurements of fog and rain water chemistry at the summit of Mt. Fuji, the highest peak in Japan, as well as at Tarobo, the ESE slope of Mt. Fuji in September 2002. The pH of fog and rain water sampled at Mt. Fuji varied over a range of 4.0–6.8. Acidic fogs (pH < 5.0) were observed at the summit when the air mass came from the industrial regions on the Asian continent. The ratio of [SO42−]/[NO3] in the fog water was lower at Tarobo than at the summit. High concentrations of Na+ and Cl were determined in the rain water sampled at the summit, possibly because of the long-range transport of sea-salt particles raised by a typhoon through the middle troposphere. The vertical transport of sea-salt particles would influence the cloud microphysical properties in the middle troposphere. Significant loss of Mg2+ was seen in the rain water at the summit. The concentrations of peroxides in the fog and rain water were relatively large (10–105 μM). The potential capacity for SO2 oxidation seems to be strong from summer to early autumn at Mt. Fuji. The fog water peroxide concentrations displayed diurnal variability. The peroxide concentrations in the nighttime were significantly higher than those in the daytime.  相似文献   

17.
By making use of TOVS Path-B satellite retrievals and ECMWF reanalyses, correlations between bulk microphysical properties of large-scale semi-transparent cirrus (visible optical thickness between 0.7 and 3.8) and thermodynamic and dynamic properties of the surrounding atmosphere have been studied on a global scale. These clouds constitute about half of all high clouds. The global averages (from 60°N to 60°S) of mean ice crystal diameter, De, and ice water path (IWP) of these clouds are 55 μm and 30 g m−2, respectively. IWP of these cirrus is slightly increasing with cloud-top temperature, whereas De of cold cirrus does not depend on this parameter. Correlations between De and IWp of large-scale cirrus seem to be different in the midlatitudes and in the tropics. However, we observe in general stronger correlations between De and IWP and atmospheric humidity and winds deduced from the ECMWF reanalyses: De and IWP increase both with increasing atmospheric water vapour. There is also a good distinction between different dynamical situations: In humid situations, IWP is on average about 10 gm−2 larger in regions with strong large-scale vertical updraft only that in regions with strong large-scale horizontal winds only, whereas the mean De of cold large-scale cirrus decreases by about 10 μm if both strong large-scale updraft and horizontal winds are present.  相似文献   

18.
The compositions of TSP between AD and NAD storm periods were compared to study their long-term variations and chemical characteristics. TSP samples were collected at Gosan site in Jeju Island of Korea from February to May of 1992–2004. The major ionic and elemental species of TSP aerosols were analyzed. During AD periods, the concentrations of crust components (nss-Ca2+, Al, Fe, Ca, Mg, Ba, Sr, Ti) increased remarkably, and the concentrations of anthropogenic components (nss-SO42−, NO3, S, Zn, Pb, Cr, Ni, Cd), with the exception of NH4+, increased weakly. The concentration ratios of all major components between AD and NAD periods showed ranges from 1.2 to 8.5, except for NH4+. The slope of the linear regression indicated that the contribution of CO32− may have comprised up to 17% of the total anions. Our results suggested that the AD storm greatly influenced TSP compositions. Linear regression analyses indicated that NH4+ was not correlated with NO3, but highly correlated with nss-SO42− during both periods. The nss-SO42− was also correlated with NH4+, K+, nss-Mg2+, and nss-Ca2+ during both periods. Interestingly, NO3 was associated with nss-Ca2+ and nss-Mg2+ during AD periods. Of the metal elements, Fe, Ca, Mg, Ti, Mn, Ba, Sr, V, and Co were highly correlated with Al during both periods, signifying that these metals were mostly originated from soils.  相似文献   

19.
Cloudwater samples were collected from November 1992 to March 1995 in Vallombrosa, a mountain site of the Tuscan Apennines (central Italy). Chemical analyses show that all examined inorganic ions contributed significantly to the total ionic content (TIC). The ratio SO42−/NO4 ranged from 0.92 to 3.46 and was >1 for 86% of samples. There is a wide range in the chemical composition of the cloudwater. The total ionic content ranged from 640 to 7476 μeq l−1 and pH from 3.17 to 6.22. The liquid water content (LWC) ranged from 0.06 to 0.94 g m−3 and electrical conductivity from 47 to 485 μΩ−1. The total ionic content decreases while the liquid water content increases. Also analyzed were soluble trace metals (Fe, Pb, Cu, Mn, Cd, Al), synthetic anionic surfactants and the methanesulphonic acid. Chemical analyses evidenced in some cases a high concentration of organic matter. The meteorological analysis for a few samples of individual passages was carried out for the possibility of establishing a correspondence between meteorological events and chemical composition. The sources (marine, crustal and anthropogenic) of chemical components were deduced.  相似文献   

20.
This study describes the chemical composition of dry deposition collected at a highway traffic site in central Taiwan during daytime and nighttime periods by using a dry deposition plate (DDP) and water surface sampler (WSS). In addition, the characterization for mass and water-soluble species of total suspended particulate (TSP), both PM2.5 and PM10, was studied at the study site from August 22 to November 30, 2006. Dry deposition fluxes of ambient air particulates and inorganic species (Na+, NH4+, K+, Mg2+, Ca2+, Cl, NO3 and SO42−) were analyzed by Ion Chromatography (DIONEX-100).Results of the particulate dry deposition fluxes and mass concentrations are higher in the water surface sampler with respect to the dry deposition plate used in this study. Statistical results also showed the average dry deposition flux of the ionic species (Na+, NH4+, K+, Cl, NO3 and SO42−) obtained by the DDP and WSS displayed significant differences. Also, the average concentrations of Mg2+ and, Ca2+ were statistically the same at this study site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号