首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
页岩气是赋存于泥页岩中的自生自储天然气,其赋存形式具有多样性,包括游离态、吸附态和少量的溶解态。其中吸附态是页岩气的主要赋存方式,占到页岩气总含量20%~85%。页岩吸附气含气量是计算页岩气资源量的关键性参数,是评价泥页岩是否具有开采价值的重要标准。国内外学者针对不同地区不同类型泥页岩做了大量的等温吸附实验,然而等温吸附实验只能开展恒定温度下的页岩吸附实验,不能研究任意温度下页岩气吸附能力。笔者选取渝东南地区4口井8个龙马溪组泥页岩样品开展气体(CH4、N2、CO2)吸附实验、有机碳含量分析、X-衍射岩矿分析、SEM扫描电镜实验,研究页岩吸附甲烷能力的主要控制因素。在高过成熟阶段,丰富的有机质发育大量的微孔隙,使得页岩对气体的吸附能力增加;在地下页岩储层含水条件下,黏土矿物主要吸附水,而有机质由于具有亲油气性,使得页岩气绝大部分吸附在页岩有机质表面,且有机质吸附甲烷等量吸附热远大于黏土矿物,因此页岩吸附甲烷最重要的内部控制因素是有机碳含量。甲烷等温吸附实验表明,随温度升高页岩吸附量显著降低,随压力增加,页岩吸附量增加,当压力达到一定值时,页岩吸附量不再随压力的增加而增加,最大甲烷吸附量随温度具有线性降低的趋势,且兰氏压力的对数与温度的倒数有很好的线性关系。基于兰氏方程,以甲烷等温吸附实验数据为基础,利用多元线性回归的方法,建立兰氏体积与w(TOC)、温度的关系及兰氏压力与温度的关系,带入兰氏方程,建立温度压力耦合控制下的扩展兰氏方程,进而计算地层温度压力条件下页岩储层吸附甲烷能力。结果表明:随深度增加,在温度压力耦合控制下,泥页岩吸附甲烷能力先增加后降低,800~1350m达到最大吸附能力;浅层压力对页岩吸附甲烷能力起主要作用,随深度的增加温度对页岩吸附甲烷能力控制作用增强;随w(TOC)增大,富有机质页岩吸附甲烷能力增加,达到最大吸附能力时的深度也随之增加。当页岩有机碳含量为1%时,页岩最大甲烷吸附量为1.6m3/t,当页岩有机碳含量为3%时,页岩最大甲烷吸附量为2.5m3/t,每增加2%的w(TOC)页岩最大吸附能力大约增加1 m3/t。  相似文献   

2.
页岩甲烷吸附能力是决定页岩气井开采方案的重要参数,对评估页岩气藏潜力意义重大。干酪根类型、总有机碳含量、矿物组成、成熟度和孔径等是影响页岩吸附性能的因素,但针对高温高压下过剩吸附现象对页岩甲烷吸附能力影响的研究还需开展进一步的探索。为揭示四川盆地东北地区五峰组页岩甲烷吸附能力,本文通过场发射扫描电镜、低温氮气吸附和高压甲烷吸附实验,研究了高温高压下页岩的甲烷吸附能力,并分析了页岩孔隙结构等对页岩吸附能力的影响。结果表明:①五峰组页岩孔隙结构非均质性强,发育有机孔隙、粒(晶)间孔隙、粒(晶)内孔隙和粒(晶)间溶孔等多种孔隙;②比表面积平均为19.1282m^2/g;孔体积平均为0.0195cm^3/g;孔径平均为5.2226nm;③修正后的饱和吸附气量为2.56m^3/t;④五峰组页岩甲烷吸附性能受控于比表面积、孔体积;有机质含量越大、有机质热演化程度越低,其甲烷吸附性能越强;⑤孔隙结构是影响页岩甲烷吸附能力的重要内因。同时指出低压条件下的实验吸附曲线不适合直接评价页岩甲烷吸附能力。  相似文献   

3.
基于页岩无机孔隙和有机孔隙润湿性和孔径的差异,考虑甲烷、氦气、水在页岩无机孔隙和有机孔隙中储集位置的不同,通过3种流体饱和实验建立了储层温度和压力条件下页岩气藏各赋存状态气体体积的实验测量和计算方法,得到页岩的无机孔隙度和有机孔隙度,并分析了页岩气储层含气量的影响因素。研究表明:对于所选岩样,无机孔隙和有机孔隙分别占总孔隙体积的65%和35%,无机孔隙中的游离气、有机孔隙中的游离气和吸附气分别平均占总含气量的51%、22%和27%;川南下志留统龙马溪组页岩具有较高的热演化程度,随总有机碳含量的增加,纳米级有机孔隙大量发育,为甲烷提供了吸附空间。明确了总有机碳含量主要影响吸附气含量,指出在页岩气资源量评价、产能预测和后期开发过程中,需要考虑有机质及其内部吸附气的影响。  相似文献   

4.
页岩气吸附机理的研究对于页岩气成藏和储量评价具有重要意义.甲烷在地层温度和压力条件下处于超临界状态,页岩气的吸附实际上为超临界吸附,但其机理目前尚不明确.在建立Ono-Kondo格子模型的基础上,结合低温氮气吸附和高压甲烷等温吸附实验,对龙马溪组页岩的微观孔隙结构和超临界吸附曲线进行了分析.结果表明,页岩中发育的孔隙尺度较小,比表面积较大,吸附气主要赋存于微孔和中孔中;页岩的等温吸附曲线在压力较大时,必然存在下降的趋势,这并非异常现象,而是超临界甲烷过剩吸附量的本质特征.Ono-Kondo格子模型对页岩高压等温吸附曲线的拟合效果很好,相关系数均在0.99以上,说明该模型可以表征页岩纳米孔隙中超临界甲烷的吸附特征.基于拟合得到的吸附相密度可将过剩吸附量转换为绝对吸附量,并直接计算地层温度和压力下甲烷的吸附分子层数,计算层数均小于1,表明甲烷分子并没有铺满整个孔隙壁面.因此受流体性质、吸附剂吸附能力和孔隙结构3个方面的影响,页岩气的吸附机理为单层吸附,不可能为双层甚至多层吸附.   相似文献   

5.
吸附气是页岩气的重要组成部分,页岩气吸附机理的研究及吸附量的计算是页岩气研究的重点内容。在某些地质条件下,页岩气组成复杂,不仅包含甲烷,还有一定量的乙烷等湿气以及氮气和二氧化碳等非烃气体,因此有必要针对页岩开展多元气体竞争吸附研究。本文在前人研究基础上,分析页岩中多元气体竞争吸附的机理,介绍扩展Langmuir方程、理想吸附溶液理论(IAST)和晶格密度泛函理论(Lattice DFT)等3种竞争吸附预测模型,探讨有机质含量、页岩组成、孔隙结构、成熟度、气体组成、含水率和压力等影响页岩中多元气体竞争吸附的因素,阐述页岩中多元气体竞争吸附的研究现状并指出其中存在的问题与难点,并对页岩中多元气体竞争吸附研究的发展趋势和需要解决的问题进行探讨。  相似文献   

6.
页岩气储层粘土矿物孔隙特征及其甲烷吸附作用   总被引:3,自引:0,他引:3  
粘土矿物是页岩的主要组成矿物,与页岩气的赋存和富集密切相关。粘土矿物因其特殊的晶体结构,在晶层之间、矿物内部以及矿物颗粒之间形成了不同类型的孔隙,这些孔隙的大小、形貌和比表面积决定着粘土矿物的甲烷吸附能力。为此,本文综述了粘土矿物的孔隙结构以及孔隙中的水和有机质对甲烷吸附性的影响,指出不同类型的粘土矿物孔隙发育与形貌特征存在差异,蒙脱石中多发育圆形、狭缝状的微孔且总比表面积最大,导致蒙脱石在所有粘土矿物中的甲烷吸附量最大;伊利石与高岭石中多发育中孔与大孔,吸附甲烷的能力低于蒙脱石。粘土矿物孔隙中的水与有机质显著影响到甲烷的吸附能力,水分子会占据孔隙表面,降低了甲烷的吸附能力,但可溶有机质对粘土矿物甲烷吸附能力的具体影响目前尚不明了。同时,根据页岩气勘探需求指出了本方向某些有待深入探讨的问题。  相似文献   

7.
页岩储层特征对于页岩气的赋存状态、含气量和后期开发均具有重要意义。湖相页岩多处于生油窗阶段,其储层特征与海相页岩区别较大。以柴达木盆地北缘中侏罗统页岩为研究对象,利用岩芯观察、有机地球化学分析、XRD矿物成分分析、低温氮气吸附、FE-SEM以及甲烷等温吸附等手段分析页岩储层的岩石类型、地化、矿物组成、孔隙结构和含气性特征。结果表明,与海相页岩相比,柴达木盆地北缘中侏罗统页岩具有"两高两低两种类型"的特点,即有机碳含量高、黏土矿物含量高,热演化程度低、脆性矿物含量低,有机质类型以Ⅱ、Ⅲ型为主。较低的热演化程度导致样品有机质孔隙发育较少;有机酸的溶蚀作用及矿物的转化作用是次生孔隙形成的主要因素。与海相页岩不同的是,高丰度低演化程度导致该演化阶段以产液态烃为主,且样品中可溶有机质含量较高,它对于样品的孔隙结构和甲烷赋存状态都有影响,表现为随比表面积增大,样品等温吸附实验结果呈现下降的趋势。对于高丰度低演化程度湖相页岩储层特征的研究,不仅为柴达木盆地北缘中侏罗统页岩气的勘探开发提供地质依据,同时也完善了页岩气地质理论。  相似文献   

8.
页岩气的赋存形式研究及其石油地质意义   总被引:11,自引:0,他引:11  
页岩气是以游离、吸附和溶解状态赋存于暗色泥页岩中的天然气,其赋存形式具有多样性,但以游离态和吸附态为主,溶解态仅少量存在。综述了页岩气的赋存形式及其影响因素,包括页岩气成因、页岩的物质组成(有机碳含量、矿物成分、岩石含水量)、岩石结构(孔隙度、渗透率)和温度、压力等。认识影响不同形式页岩气赋存量的地质因素,有助于利用容积法评估页岩气地质储量的水平,因为游离态页岩气的含量取决于页岩的有效孔隙度和含气饱和度,而吸附态页岩气的含量则受页岩的气体吸附能力影响。认为发展页岩孔隙结构表征技术,研究页岩气在粘土矿物表面和纳米孔隙中的吸附行为,可以进一步了解不同地质条件下页岩气的赋存形式,并为页岩气的资源评价提供更为准确的参数,因此它们将是页岩气下一步研究的重点之一。  相似文献   

9.
富有机质页岩的孔隙演化与页岩气赋存富集关系密切,孔隙连通性与形状演化特征对储集空间精细表征和页岩气赋存机理的揭示具有重要意义。本文对山东半岛北部古近系黄县组低成熟富有机质页岩不同热演化阶段的模拟产物开展低温液氮吸附和扫描电镜实验,并辅以数字图像处理技术分析页岩孔隙连通性和形状系数演化过程。结果表明:① 低成熟阶段,有机孔少量发育,无机孔主要为矿物基质孔;随热演化程度增加,大量近圆形有机孔逐渐形成,少量溶蚀孔和黏土矿物层间孔生成;到过成熟阶段,压实作用导致部分孔隙减小或消失;② 随热演化程度增加,有机孔和无机孔孔径均呈先增大后减小的趋势,孔隙形状系数均呈现近“V”型变化趋势;③ 高温高压导致样品孔隙系统第二个优势孔径峰值变大,表明孔隙系统增加了狭长 裂缝型孔隙,有助于沟通其他类型孔隙,提高孔隙系统的连通性;④ 热演化过程中生成的大量近圆形有机孔能为甲烷提供更多吸附位,生成的黏土矿物层间孔等狭缝型无机孔能够提高孔隙连通性,从而有助于提高页岩气的赋存和运移能力。本研究可为页岩气储层表征与页岩气赋存富集研究提供基础。  相似文献   

10.
以川西南地区寒武系筇竹寺组页岩为例,应用岩石薄片鉴定、矿物X射线衍射、压汞-吸附联合测定、氦气孔隙度测试、氩离子抛光-扫描电镜观察及页岩气储层测井定量表征等多种技术方法,开展页岩孔隙结构、类型及特征研究,探讨了有机-无机复合型连通孔隙系统的形成机制及其对页岩气富集的控制作用。研究结果表明:(1)研究区筇竹寺组富有机质页岩孔隙以介孔和微孔为主,其次为大孔;(2)页岩孔隙类型以粒(晶)间孔、黏土矿物层间孔为主,多呈三角形、多边形及狭缝形;其次为有机黏土复合体内的有机质孔,多呈不规则形;(3)富有机质页岩具备发育有机-无机复合型连通孔隙系统的条件,有机质孔和无机矿物孔的复合提高了页岩储集能力,控制了页岩气的富集。  相似文献   

11.
五峰组—龙马溪组海相富有机质页岩是凤冈一区页岩气勘探开发的重要目的层系,为了查明五峰组—龙马溪组页岩气储层的微观孔隙结构特征和含气性,依据XX井五峰组—龙马溪组富有机质页岩氮气吸附实验、等温吸附实验、现场含气量测试及相应的有机地球化学和无机地球化学实验等分析测试数据,重点研究了页岩孔隙结构的主要控制因素及不同因素对页岩吸附能力和含气性的影响。结果表明:凤冈一区五峰组—龙马溪组页岩的孔隙类型主要分为三类,即"墨水瓶"型孔隙、平行板状孔隙及狭缝型/楔形孔隙,其中平行板状孔隙在页岩中发育较多,有利于烃类气体的渗流;页岩储层的孔径主要在3~5nm,为中孔范围。页岩中还发育有一定数量的大孔和裂缝,导致了孔径分布曲线上较小次峰的出现;有机质丰度和有机质成熟度对页岩孔隙的发育起到了重要的控制作用。页岩中的石英主要为生物硅质,石英含量与TOC含量对孔隙结构的影响大致相同。黏土矿物含量仅对孔隙体积起到了控制作用;页岩样品的含气性和吸附能力均属于较好的水平,有机质丰度、有机质成熟度及比表面积为页岩含气量的主要控制因素,其中有机质丰度对页岩的吸附能力起到了至关重要的作用。  相似文献   

12.
页岩储层孔隙结构是评价页岩气资源潜力的基础。本文基于有机碳含量、沥青反射率、X射线衍射、场发射扫描电镜(FE-SEM)及低温氮气吸附等方法,探讨鄂西地区震旦系陡山沱组页岩沉积组成、孔隙结构及其控制因素。结果表明:(1)陡山沱组为硅质和钙质页岩,TOC介于3.29%~6%,主要为I型干酪根,处于高-过成熟阶段;(2)陡山沱组页岩有机孔发育程度较低,无机孔提供主要储集空间,包括脆性矿物和黏土矿物的粒间孔、层间孔和部分溶蚀孔,以及少量微裂缝;(3)孔径分布范围为1.1~284nm,总孔体积平均为0.034ml/g,微孔、介孔和大孔体积分别为0.005ml/g、0.023ml/g和0.006ml/g,以介孔为主;(4)陡山沱组页岩TOC与孔体积无明显相关性,表明有机孔对孔体积贡献较小。硅质矿物和黏土矿物含量与页岩孔体积正相关性较好,表明矿物组成是陡山陀组页岩孔隙发育的主要控制因素。鄂西地区陡山沱组页岩具有良好的物质条件、生烃条件和页岩气储集空间,是潜在的页岩气勘探开发层系。  相似文献   

13.
页岩的微观孔隙结构对其甲烷吸附性能及页岩油气潜力具有重要影响,前人研究主要集中在海相页岩。该文以四川 盆地川西坳陷上三叠统须家河组五段为例,开展了陆相页岩的探索研究。首先通过低温氮气吸附实验对页岩样品的微观孔 隙结构特征进行了研究,计算了页岩的比表面积、孔径分布、孔体积和平均孔径等孔隙结构参数;然后通过高压甲烷等温 吸附实验,研究了页岩样品的甲烷吸附特征;最后探讨了页岩微观孔隙结构特征对甲烷吸附性能的影响。结果表明,须五 段页岩平均孔径为7.81~9.49 nm,主体孔隙为中孔,也含有一定量的微孔和大孔,孔隙形状以平行板状孔为主,含有少量 墨水瓶形孔。页岩比表面积高出常规储层岩石许多,有利于气体在页岩表面吸附存储,孔径在2~50 nm的中孔提供了主要 的孔体积,构成了页岩中气体赋存的主要空间。在85℃条件下,页岩甲烷吸附的兰氏体积为1.21~4.99 m3/t,不同页岩样品 之间的吸附性能差异明显。页岩的兰氏体积与比表面积之间呈现良好的正相关关系,比表面积与黏土矿物含量呈正相关, 而与总有机碳含量关系不明显。页岩的兰氏体积与微孔和中孔体积之间都具有良好的正相关关系,微孔体积和中孔体积与 总有机碳含量之间存在一定的正相关关系,但是正相关性的程度没有微孔体积和中孔体积与黏土矿物含量之间的关系强 烈。陆相页岩有机质热演化程度相对较低,因此有机孔发育有限:但另一方面同时黏土矿物含量较高,所以其内部发育大 量微孔和中孔,从而构成可观的比表面,影响甲烷吸附能力。  相似文献   

14.
柴达木盆地东部石炭系页岩是一套待开发的优质烃源岩,吸附是页岩气最主要的储集状态,但针对该区页岩吸附特征的研究较少。依据物质守恒与热力学平衡原理,运用自主设计的气固双相等温吸附实验仪,参考煤的高压等温吸附测定行业标准,对取自柴达木盆地东部石浅1井的页岩样品进行了不同温度(30 ℃、40 ℃、50 ℃和60 ℃)的甲烷等温吸附实验研究,并运用LangmuirFreundlich(L F)模型对吸附量实验值进行非线性回归分析;根据ClausiusClapeyron方程计算得到页岩对甲烷的等量吸附热方程。研究结果表明:压力一定时,页岩对甲烷的吸附量随着温度升高而降低;温度一定时,随压力升高,甲烷吸附量出现先增大后降低的现象,具有典型的超临界吸附特征;L F模型对等温吸附过程拟合效果良好,实验结果将模型中4个参数确定,且各参数物理意义明确;计算得到等量吸附热与吸附量之间的关系为:q=-3 679.7n+9 779.5,等量吸附热随吸附量增大而降低。等量吸附热结合L F模型可以预测任意温度、压力下页岩对甲烷的吸附量,且预测值与实验所得数据结果吻合较好,对页岩气储量评估与开发利用具有实际意义。  相似文献   

15.
针对四川盆地长宁—威远页岩气示范区志留系龙马溪组泥页岩吸附气量大(70%~80%)的特性,对该页岩气区11口井龙马溪组优质页岩段的岩心样品作X射线衍射分析、扫描电镜和等温吸附分析测试,结合大量泥页岩含气量实测数据,统计分析及评价表明:研究区地层因素中,生烃条件如总有机碳含量(0.17%~4.3%)、有机质类型(Ⅰ、Ⅱ1型)和成熟度(2.4%~3.0%),以及储层条件如矿物成分、孔隙体积(3%~6%)、孔隙结构(中孔为主)和湿度,主要是通过改变页岩气生成量和吸附活性表面的大小而产生影响;外部因素如温度和压力主要是通过改变气体分子的活化能和结合能而对泥页岩吸附能力产生一定的影响。  相似文献   

16.
为了从深层次揭示控制黏土矿物天然气吸附能力的主要因素, 选择不同来源和成因的泥页岩中的常见黏土矿物进行了甲烷等温吸附实验.分析显示不同类型的黏土矿物气体吸附能力差异明显, 各种黏土矿物甲烷吸附容量次序为蒙脱石>>伊蒙混层>高岭石>绿泥石>伊利石>粉砂岩>石英岩.黏土矿物结晶结构决定了矿物片层之间的层间孔隙和聚合体颗粒之间粒间孔隙的形态和大小, 从而决定着其表面积和气体吸附性能.黏土矿物甲烷吸附能力与电镜扫描所反映的微孔隙发育程度密切相关.研究表明, 黏土矿物的气体吸附能力不仅与黏土类型有关, 而且明显受成岩演化程度和岩石成因的影响.此外, 随粒度减小孔隙连通性和内表面积的不断增加, 黏土矿物气体吸附能力有所升高.   相似文献   

17.
陕西省东南部下寒武统黑色页岩发育,厚度较大,目前对该地区页岩的相关研究极少。通过烃源岩分析、薄片鉴定、扫描电镜分析、X线衍射、液氮吸附等实验方法,对页岩的有机地球化学特征、矿物组成、孔隙结构特征等储层物性参数及页岩气勘探开发潜力进行了分析。结果表明,该套黑色页岩有机质类型以Ⅰ型干酪根为主,总有机碳(TOC)平均为2.24%。烃源岩有机质成熟度平均为2.07%,处于高或过成熟阶段,有利于页岩气的生成及吸附。页岩储层发育溶蚀孔隙、黏土矿物微孔隙和微裂缝。从矿物组成看,脆性矿物含量较高,利于后期压裂改造。从孔隙结构看,孔隙具有较大的比表面积,平均值为2.75 m~2/g,以中孔为主。综上所述,虽然研究区构造复杂,但有机地化特征、矿物组成、孔隙发育及孔隙结构特征等均表明下寒武统黑色页岩具有一定的页岩气资源潜力。  相似文献   

18.
泥页岩以孔隙丰富、孔径细小为特征,纳米孔隙对孔隙流体的局限效应决定了泥页岩中页岩气的赋存形式和扩散性质以及潜在的CO_2处置能力。本文在总结泥质岩石纳米孔隙表征结果的基础上,使用淬火固体密度泛函理论(QSDFT)和分子动力学方法(MD),研究了泥质岩石中纳米孔隙内流体的密度分布、赋存形式以及活动性。结果表明,孔径较小(如1.0nm)时,因孔壁的束缚效应纳米孔隙内甲烷成单层分布,而当孔径增大至2.0nm时,除孔壁表面多层吸附的甲烷外还出现自由态甲烷。相同条件下,孔径较小的孔内吸附态甲烷密度高于孔径较大的孔内吸附态甲烷密度,有机孔内吸附态甲烷的密度高于无机孔内吸附态甲烷的密度。随着温度、压力(深度)的增大,孔隙表面的局限效应减弱,表面束缚的吸附态甲烷比例减小,自由态甲烷相对增加。  相似文献   

19.
为揭示陆相页岩微观孔隙结构特征,应用低温氮气吸附-解吸实验,结合扫描电镜分析、有机碳测定及X射线衍射等手段,分析页岩有机质和矿物组成,厘清孔隙结构和分形特征,并探究其影响因素。结果表明:沙河子组陆相页岩矿物组成以黏土矿物、石英和长石为主。储集空间类型主要为黏土矿物粒内孔、长石溶蚀孔和颗粒边缘孔,有机孔隙不发育。氮吸附曲线主要呈现为Ⅳ类吸附曲线,发育H2和H3两类迟滞回线,其中H3型比表面积较低,平均孔径较大,宏孔含量较高。页岩孔体积主要由介孔和宏孔贡献,比表面积主要由介孔贡献。孔径分布呈现双峰态,左峰约为2.7 nm,右峰分布在20~70 nm。页岩发育两段分形特征,分形维数显示H3型页岩孔隙结构非均质性及复杂性较弱。孔隙结构主要受矿物组成控制,与TOC无明显相关性,微孔含量与比表面积越高,宏孔含量与平均孔径越高,页岩孔隙结构越复杂,越不利于页岩气的运移及产出。陆相页岩因沉积环境控制下赋存的腐殖型有机质,从本质上影响了其孔隙空间、孔隙结构及页岩气富集特征,与海相页岩区别显著。   相似文献   

20.
基于野外地质和钻井资料,结合相关实验测试结果,对湘西北地区下古生界海相页岩储层特征进行了深入研究,并探讨了页岩甲烷含气性及影响因素。结果表明:牛蹄塘组黑色页岩以深水陆棚斜坡相沉积为主,厚度范围为50~250 m;龙马溪组为闭塞海湾沉积,底部黑色页岩发育。两组页岩有机质类型均属于Ⅰ型,有机碳含量平均为3.57%和1.16%,热演化程度较高,平均达2.61%和2.08%。受沉积环境和成岩作用影响,两组页岩均具有高石英、低黏土、少量碳酸盐矿物的组成特征。页岩储集空间可划分为3大类:矿物基质孔、有机质孔、微裂缝。受有机质和黏土矿物等因素影响,页岩内部孔隙结构参数各不同,但主体上孔径小于50 nm的微孔和中孔提供了大部分比表面积和孔体积,为气体存储主要场所。牛蹄塘组页岩甲烷最大吸附量平均为1.98 cm3/g;龙马溪组页岩甲烷最大吸附量较低,为1.16 cm3/g。其中有机质与黏土矿物对页岩甲烷吸附量均有一定的贡献,而过高的成熟度和含水量可导致页岩吸附能力下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号