首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much of the success of modern seismic data processing derives from the use of the stacking process. Unfortunately, as is well known, conventional normal moveout correction (NMO) introduces mispositioning of data, and hence mis-stacking, when dip is present. Dip moveout correction (DMO) is a technique that converts non-zero-offset seismic data after NMO to true zero-offset locations and reflection times, irrespective of dip. The combination of NMO and DMO followed by post-stack time migration is equivalent to, but can be implemented much more efficiently than, full time migration before stack. In this paper we consider the frequency-wavenumber DMO algorithm developed by Hale. Our analysis centres on the result that, for a given dip, the combination of NMO at migration velocity and DMO is equivalent to NMO at the appropriate, dip-dependent, stacking velocity. This perspective on DMO leads to computationally efficient methods for applying Hale DMO and also provides interesting insights on the nature of both DMO and conventional stacking.  相似文献   

2.
平面声波在粗糙界面上的反射特征研究   总被引:4,自引:1,他引:3       下载免费PDF全文
基于有关粗糙界面的Rayleigh假设,讨论了平面声波按余弦规律快速变化的小尺度粗糙界面上的反射特征.研究表明:这类界面与位于该位置的一个过渡地层的作用相当.该过渡层的厚度为粗糙界面的起伏幅度,速度和密度为上下两层介质相应量的平均值.研究了埋藏很深的微粗糙界面所引起的地震反射(绕射)波的频散特性和走时的构成,即包含零炮检距反射时间、正常时差和界面粗糙时差三部分内容.该粗糙时差与空间坐标和时间坐标无关,与绕射波的阶次有关,绕射波尾随在反射波之后以某一固定的时差出现.且只有当界面的粗糙波长与地震波的波长相当时,才能观测到这类绕射波.该结论为粗糙界面地震反射资料的处理方法提供了理论依据.  相似文献   

3.
A simple and accurate traveltime approximation is important in many applications in seismic data processing, inversion and modelling stages. Generalized moveout approximation is an explicit equation that approximates reflection traveltimes in general two-dimensional models. Definition of its five parameters can be done from properties of finite offset rays, for general models, or by explicit calculation from model properties, for specific models. Two versions of classical finite-offset parameterization for this approximation use traveltime and traveltime derivatives of two rays to define five parameters, which makes them asymmetrical. Using a third ray, we propose a balance between the number of rays and the order of traveltime derivatives. Our tests using different models also show the higher accuracy of the proposed method. For acoustic transversely isotropic media with a vertical symmetry axis, we calculate a new moveout approximation in the generalized moveout approximation functional form, which is explicitly defined by three independent parameters of zero-offset two-way time, normal moveout velocity and anellipticity parameter. Our test shows that the maximum error of the proposed transversely isotropic moveout approximation is about 1/6 to 1/8 of that of the moveout approximation that had been reported as the most accurate approximation in these media. The higher accuracy is the result of a novel parameterization that do not add any computational complexity. We show a simple example of its application on synthetic seismic data.  相似文献   

4.
The moveout of P-SV mode-converted seismic reflection events in a common-midpoint gather is non-hyperbolic. This is true even if the medium has constant P- and SV-wave velocities. Furthermore, reflection-point smear occurs even along horizontal reflectors. These effects reduce the resolution of the zero-offset stack. In such a medium, the generalization of the dip moveout transformation to P-SV data can be calculated analytically. The resulting P-SV dip moveout operators solve the problem of reflection-point smear, and image any reflector regardless of dip or depth. The viability of this technique is demonstrated on synthetic and field data.  相似文献   

5.
Decomposing seismic data in local slopes is the basic idea behind velocity‐independent imaging. Using accurate moveout approximations enables computing moveout attributes such as normal moveout velocity and nonhyperbolic parameters as functions of zero‐offset travel time. Mapping of moveout attributes is performed from the pre‐stack seismic data domain into the time‐migrated image domain. The different moveout attributes have different accuracy for a given moveout approximation that depends on the corresponding order of travel‐time derivative. The most accurate attribute is the zero‐offset travel time, and the nonhyperbolic parameter has the worst accuracy, regardless of the moveout approximation. Typically, the mapping of moveout attributes is performed using a point‐to‐point procedure, whereas the generalized moveout approximation requires two point‐to‐point mappings. Testing the attribute mapping on the different models shows that the accuracy of mapped attributes is model dependent, whereas the generalized moveout approximation gives practically exact results.  相似文献   

6.
A velocity model updating approach is developed based on moveout analysis of the diffraction curve of PS converted waves in prestack Kirchhoff time migration. The diffraction curve can be expressed as a product of two factors: one factor depending on the PS converted‐wave velocity only, and the other factor depending on all parameters. The velocity‐dependent factor represents the hyperbolic behaviour of the moveout and the other is a scale factor that represents the non‐hyperbolic behaviour of the moveout. This non‐hyperbolic behaviour of the moveout can be corrected in prestack Kirchhoff time migration to form an inverse normal‐moveout common‐image‐point gather in which only the hyperbolic moveout is retained. This hyperbolic moveout is the moveout that would be obtained in an isotropic equivalent medium. A hyperbolic velocity is then estimated from this gather by applying hyperbolic moveout analysis. Theoretical analysis shows that for any given initial velocity, the estimated hyperbolic velocity converges by an iterative procedure to the optimal velocity if the velocity ratio is optimal or to a value closer to the optimal velocity if the velocity ratio is not optimal. The velocity ratio (VP/VS) has little effect on the estimation of the velocity. Applying this technique to a synthetic seismic data set confirms the theoretical findings. This work provides a practical method to obtain the velocity model for prestack Kirchhoff time migration.  相似文献   

7.
Geometrical acoustic and wave theory lead to a second-order partial differential equation that links seismic sections with different offsets. In this equation a time-shift term appears that corresponds to normal moveout; a second term, dependent on offset and time only, corrects the moveout of dipping events. The zero-offset stacked section can thus be obtained by continuing the section with maximum offset towards zero, and stacking along the way the other common-offset sections. Without the correction for dip moveout, the spatial resolution of the section is noticeably impaired, thus limiting the advantages that could be obtained with expensive migration procedures. Trade-offs exist between multiplicity of coverage, spatial resolution, and signal-to-noise; in some cases the spatial resolution on the surface can be doubled and the aliasing noise averaged out. Velocity analyses carried out on data continued to zero offset show a better resolution and improved discrimination against multiples. For instance, sea-floor multiples always appear at water velocity, so that their removal is simplified. This offset continuation can be carried out either in the time-space domain or in the time-wave number domain. The methods are applied both to synthetic and real data.  相似文献   

8.
石颖  王维红 《地球物理学报》2012,55(9):3115-3125
基于波动方程预测的表面多次波压制方法可处理复杂地下介质的地震资料,但计算成本较高.基于滤波的多次波压制方法计算效率较高,但其成功应用仅局限于一次波和多次波有明显时差差别的地震数据,对来自速度逆转等复杂介质数据则较难获得满意的压制效果.本文将波动方程预测的反馈迭代法和滤波法有效结合,采用GPU(图形处理器)和CPU协同并行加速计算粗略预测表面多次波,随后在双曲Radon域比较分析原始数据和预测的多次波,设计合理有效的Butterworth型自适应滤波器,滤出原始数据Radon域中的多次波能量,进行Radon反变换后,在时空域将多次波从原始数据中减去,得多次波压制结果.文中对理论模拟的单炮数据、复杂的SMAART模型以及实际地震数据进行了计算,结果表明,结合基于波动方程预测和双曲Radon变换的方法有效突破了两种方法各自的局限性,可高效高精度地压制复杂地下介质的表面多次波.  相似文献   

9.
Migration velocity analysis, a method for determining long wavelength velocity structure, is a critical step in prestack imaging. Solution of this inverse problem is made difficult by a multimodal objective function; a parameter space often vast in extent; and an evaluation procedure for candidate solutions, involving the calculation of depth-migrated image gathers, that can be prohibitively expensive. Recognizing the global nature of the problem, we employ a genetic algorithm (GA) in the search for the optimum velocity model. In order to describe a model efficiently, regions of smooth variation are identified and sparsely parametrized. Region boundaries are obtained via map migration of events picked on the zero-offset time section. Within a region, which may contain several reflectors, separate components describe long and short wavelength variations, eliminating from the parameter space, models with large velocity fluctuations. Vital to the success of the method is rapid model evaluation, achieved by generating image gathers only in the neighbourhood of specific reflectors. Probability of a model, which we seek to maximize, is derived from the flatness of imaged events. Except for an initial interpretation of the zero-offset time section, our method is automatic in that it requires no picking of residual moveout on migrated gathers. Using an example data set from the North Sea, we show that it is feasible to solve for all velocity parameters in the model simultaneously: the method is global in this respect also.  相似文献   

10.
The Karhunen-Loève (K–L) transform is an effective technique for suppressing spatially uncorrelated noise, but because of its high computational cost, fast transforms, such as the Fourier transform, have been more favoured. Two techniques that combine to make the K–L transform feasible for seismic data processing are discussed. The first technique filters the data for limited dips. For each dip, linear moveout is applied to the seismic sections so that events with this dip are made flat. By interpolation, we can include dips that are fractions of a sample/trace. After linear moveout, zero-lag K–L filtering is applied followed, by inverse linear moveout; the results from all dips are added to form the final filtered data. The second technique is blocking, in which the seismic section is divided into blocks small enough for each block to be processed using relatively small matrices; the processed blocks are assembled to form the final filtered section. Using a combination of these techniques, seismic sections can be filtered at a reasonable cost using the K-L transform.  相似文献   

11.
The simulation of a zero-offset (ZO) stack section from multi-coverage reflection data is a standard imaging method in seismic processing. It significantly reduces the amount of data and increases the signal-to-noise ratio due to constructive interference of correlated events. Conventional imaging methods, e.g., normal moveout (NMO)/dip moveout (DMO)/stack or pre-stack migration, require a sufficiently accurate macro-velocity model to yield appropriate results, whereas the recently introduced common-reflection-surface stack does not depend on a macro-velocity model. For two-dimensional seismic acquisition, its stacking operator depends on three wavefield attributes and approximates the kinematic multi-coverage reflection response of curved interfaces in laterally inhomogeneous media. The common-reflection-surface stack moveout formula defines a stacking surface for each particular sample in the ZO section to be simulated. The stacking surfaces that fit best to actual events in the multi-coverage data set are determined by means of coherency analysis. In this way, we obtain a coherency section and a section of each of the three wavefield attributes defining the stacking operator. These wavefield attributes characterize the curved interfaces and, thus, can be used for a subsequent inversion. In this paper, we focus on an application to a real land data set acquired over a salt dome. We propose three separate one-parametric search and coherency analyses to determine initial common-reflection-surface stack parameters. Optionally, a subsequent optimization algorithm can be performed to refine these initial parameters. The simulated ZO section obtained by the common-reflection-surface stack is compared to the result of a conventional NMO/DMO/stack processing sequence. We observe an increased signal-to-noise ratio and an improved continuity along the events for our proposed method — without loss of lateral resolution.  相似文献   

12.
Optimum multichannel filters can be designed to process seismic events falling on hyperbolic moveout curves using the conventional least-squares method. Contrary to the linear moveout filters, autocorrelation and crosscorrelation functions inherent in the normal equations have to be computed numerically. However, computation times of filter coefficients are comparable to linear moveout operators. For a given source-receiver geometry and assuming straight ray-path, relative moveout of a seismic reflection event is dependent on the two way arrival time and rms velocity. Consequently, to avoid overlapping of pass and reject moveout windows, hyperbolic moveout filters have to be designed over time gates rather than for the whole record lengths. Hyperbolic and hyperbolic-linear moveout filters applied to synthetic and field seismic reflection traces show good signal-to-noise (S/N) ratio improvements. Results of some combined synthetic and field data examples are presented.  相似文献   

13.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   

14.
双参数展开CRP叠加和速度分析方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
椭圆展开共反射点(CRP)方法可以获得比常规倾角时差校正(DMO)方法更近似的零偏移距时间剖面和相应CRP速度场.大量研究和实践证实,在非均质性较弱的地区,该方法取得的成果显著.但由于该方法没有考虑速度的横向变化和转换波等情况,当地下介质存在较强非均质性时,该方法不再准确,需要引进反映速度横向变化的双参数(上行波与下行波的平均速度和速度比)进行改进.本文详细推导了引入双参数后的叠加和速度分析算法,并通过数值模型和地震资料处理证实,修正后的算法可以更好地解决地质复杂地区速度建模和叠加成像问题.  相似文献   

15.
Constant normal-moveout (CNMO) correction: a technique and test results   总被引:4,自引:0,他引:4  
We introduce a processing technique which minimizes the 'stretching effects' of conventional NMO correction. Unlike conventional NMO, the technique implies constant normal moveout (CNMO) for a finite time interval of a seismic trace. The benefits of the proposed method include preservation of higher frequencies and reduction of spectral distortions at far offsets. The need for severe muting after the correction is reduced, allowing longer spreads for stack, velocity and AVO analysis. The proposed technique has been tested on model and real data. The method may improve the resolution of CMP stack and AVO attribute analysis. The only assumptions for this stretch-free NMO correction are (i) all time samples of a digital reflected wavelet at a particular offset have the same normal moveout, and (ii) reflection records have an interference nature.  相似文献   

16.
Three common expressions for the normal moveout of recorded seismic events are investigated by numerical simulation procedures for accuracy in predicting the root-mean-squared (RMS) or mean, as the case may be, subsurface velocity function from seismic data. The principal investigation, for which detailed error curves are shown, was derived for a stochastic subsurface model composed of strata with thicknesses ranging up to 91.4 m (300 ft) and boundary velocity contrasts ranging up to 45.7 m/sec (150 ft/sec); there was a 95 percent chance of velocity increase with increased depth. The effects of changes in the basic statistical subsurface model are discussed. The results appear to confirm the judiciousness of the choices of to and (x/z') as plotting parameters to be used with the respective percent errors in the three expressions, where are, respectively, the zero-offset arrival time of, the offset distance of, and the mean-squared velocity encountered by a seismic ray. Out of the three normal-moveout expressions examined, the “straight-raypath” expression with the RMS velocity substituted as its velocity term proved to be the most accurate in the determination of velocities.  相似文献   

17.
Migration to zero offset (MZO) is a prestack partial migration process that transforms finite-offset seismic data into a close approximation to zero-offset data, regardless of the reflector dips that are present in the data. MZO is an important step in the standard processing sequence of seismic data, but is usually restricted to constant velocity media. Thus, most MZO algorithms are unable to correct for the reflection point dispersal caused by ray bending in inhomogeneous media. We present an analytical formulation of the MZO operator for the simple possible variation of velocity within the earth, i.e. a constant gradient in the vertical direction. The derivation of the MZO operator is carried out in two steps. We first derive the equation of the constant traveltime surface for linear V(z) velocity functions and show that the isochron can be represented by a fourth-degree polynomial in x, y and z. This surface reduces to the well-known ellipsoid in the constant-velocity case, and to the spherical wavefront obtained by Slotnick in the coincident source-receiver case. We then derive the kinematic and dynamic zero-offset corrections in parametric form by using the equation of the isochron. The weighting factors are obtained in the high-frequency limit by means of a simple geometric spreading correction. Our analytical results show that the MZO operator is a multivalued, saddle-shaped operator with marked dip moveout effects in the cross-line direction. However, the amplitude analysis and the distribution of dips along the MZO impulse response show that the most important contributions of the MZO operator are concentrated in a narrow zone along the in-line direction. In practice, MZO processing requires approximately the same trace spacing in the in-line and cross-line directions to avoid spatial aliasing effects.  相似文献   

18.
To reduce drilling uncertainties, zero-offset vertical seismic profiles can be inverted to quantify acoustic properties ahead of the bit. In this work, we propose an approach to invert vertical seismic profile corridor stacks in Bayesian framework for look-ahead prediction. The implemented approach helps to successfully predict density and compressional wave velocity using prior knowledge from drilled interval. Hence, this information can be used to monitor reservoir depth as well as quantifying high-pressure zones, which enables taking the correct decision during drilling. The inversion algorithm uses Gauss–Newton as an optimization tool, which requires the calculation of the sensitivity matrix of trace samples with respect to model parameters. Gauss–Newton has quadratic rate of convergence, which can speed up the inversion process. Moreover, geo-statistical analysis has been used to efficiently utilize prior information supplied to the inversion process. The algorithm has been tested on synthetic and field cases. For the field case, a zero-offset vertical seismic profile data taken from an offshore well were used as input to the inversion algorithm. Well logs acquired after drilling the prediction section was used to validate the inversion results. The results from the synthetic case applications were encouraging to accurately predict compressional wave velocity and density from just a constant prior model. The field case application shows the strength of our proposed approach in inverting vertical seismic profile data to obtain density and compressional wave velocity ahead of a bit with reasonable accuracy. Unlike the commonly used vertical seismic profile inversion approach for acoustic impedance using simple error to represent the prior covariance matrix, this work shows the importance of inverting for both density and compressional wave velocity using geo-statistical knowledge of density and compressional wave velocity from the drilled section to quantify the prior covariance matrix required during Bayesian inversion.  相似文献   

19.
Data interpolation is an important step for seismic data analysis because many processing tasks, such as multiple attenuation and migration, are based on regularly sampled seismic data. Failed interpolations may introduce artifacts and eventually lead to inaccurate final processing results. In this paper, we generalised seismic data interpolation as a basis pursuit problem and proposed an iteration framework for recovering missing data. The method is based on non‐linear iteration and sparse transform. A modified Bregman iteration is used for solving the constrained minimisation problem based on compressed sensing. The new iterative strategy guarantees fast convergence by using a fixed threshold value. We also propose a generalised velocity‐dependent formulation of the seislet transform as an effective sparse transform, in which the non‐hyperbolic normal moveout equation serves as a bridge between local slope patterns and moveout parametres in the common‐midpoint domain. It can also be reduced to the traditional velocity‐dependent seislet if special heterogeneity parametre is selected. The generalised velocity‐dependent seislet transform predicts prestack reflection data in offset coordinates, which provides a high compression of reflection events. The method was applied to synthetic and field data examples, and the results show that the generalised velocity‐dependent seislet transform can reconstruct missing data with the help of the modified Bregman iteration even for non‐hyperbolic reflections under complex conditions, such as vertical transverse isotropic (VTI) media or aliasing.  相似文献   

20.
VTI介质长偏移距非双曲动校正公式优化   总被引:21,自引:7,他引:14       下载免费PDF全文
常规Alkhalifah动校正公式精度低,不能精确描述各向异性介质长偏移距地震反射同相轴的时距关系.本文以提高VTI介质长偏移距地震资料动校正公式的精度为目标,在分析VTI介质常规动校正方程的基础上,根据误差最小原理建立优化校正系数图版,实现对常规动校正公式大偏移距误差的修正,建立最优化校正Alkhalifah动校正方程,实现了对VTI介质长偏移距地震资料常规动校正方程的改进.之后由Fomel群速度公式导出高精度VTI模型长偏移距时距函数,提出了高精度VTI介质长偏移距地震资料动校正方程.将以上的动校正方程用于各向异性参数反演,模型计算表明最优化校正Alkhalifah动校正方程的反演精度是常规长偏移距动校正方程反演精度的2~4倍,高精度动校正方程的反演精度是常规动校正方程反演精度的2~8倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号