首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Undamped quasiradial fluctuations of rotating neutron stars and the gravitation radiation generated by them are discussed. Two possible sources of energy for maintaining these fluctuations are mentioned: the energy of deformation of the decelerating neutron star (spin down) and the energy released during a jump in the star's angular velocity (glitch). Expressions are derived for the intensity of the gravitational radiation and the amplitude of a plane gravitational wave for an earthbound observer. Estimates of these quantities are obtained for the Vela and Crab pulsars, for which the secular variation in the angular velocity is most often accompanied by irregular variations. It is shown that gravitational waves from these pulsars could be detected by the new generation of detectors.  相似文献   

2.
We discuss short wavelength (inertial wave) instabilities present in the standard two-fluid neutron star model when there is sufficient relative flow along the superfluid neutron vortex array. We demonstrate that these instabilities may be triggered in precessing neutron stars, since the angular velocity vectors of the neutron and proton fluids are misaligned during precession. Our results suggest that the standard (Eulerian) slow precession that results for weak drag between the vortices and the charged fluid (protons and electrons) is not seriously affected by the instability. In contrast, the fast precession, which results when vortices are strongly coupled to the charged component, is generally unstable. The presence of this instability renders the standard (solid body) rotation model for free precession inconsistent and makes unsafe conclusions that have recently been drawn regarding neutron star interiors based on observations of precession in radio pulsars.  相似文献   

3.
The gravitational rotation of slowly rotating neutron stars with rough surfaces is examined. The source of the gravitational waves is assumed to be the energy transferred to the crust of the star during irregular changes in its angular rotation velocity. It is shown that individual pulsars whose angular velocity regularly undergoes glitches will radiate a periodic gravitational signal that can be distinguished from noise by the latest generation of detectors. Simultaneous recording of a gravitational signal and of a glitch in the angular velocity of a pulsar will ensure reliable detection of gravitational radiation. __________ Translated from Astrofizika, Vol. 49, No. 2, pp. 221–229 (May 2006).  相似文献   

4.
This paper is a discussion of some results from papers by followers of V. A. Ambartsumyan, whose fundamental articles serve as the beginning of research on superdense stars: white dwarfs and neutron stars. Solutions of the Einstein equations are given for the case of axial symmetry and are used to determine the integral parameters of rotating neutron stars and white dwarfs. A theory of magnetic field generation in neutron stars has been developed and is consistent with the existence of high, nonuniform magnetic fields on the order of 1014 G in pulsars. A theory has been proposed for the dynamics of neutron vortices and used to explain the observed relaxation of the angular velocity of pulsars following glitches.  相似文献   

5.
Equations for the dynamics of a rotating two-component neutron star are derived in the framework of the general theory of relativity. The density of neutron vortex filaments is expressed in terms of the angular momentum density of the superfluid neutrons in the “npe” phase of the neutron star. It is shown that a theory of the relaxation of the angular velocity of pulsars must include corrections associated with the deviation of g00 from unity, which is a consequence of the curvature of space.  相似文献   

6.
The electromagnetic field in a magnetized neutron star and the underlying volume charges and currents are found. A general case of a rigidly rotating neutron star with infinite conductivity, arbitrary distribution of the internal magnetic field, arbitrarily changing angular velocity, and arbitrary surface velocity less than the velocity of light is considered. Quaternions are used to describe rotation and determine the magnetic field. It is shown that the charge density is not equal to and can exceed significantly the common Goldreich–Julian density. Moreover, corrections to the magnetic field due to stellar rotation are zero. For a rotating neutron star, twisting magnetic field lines causes charge accumulation and current flows. This fact shows a possible link between changing internal magnetic field topology and observed activity of neutron stars.  相似文献   

7.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

8.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

9.
The general-relativistic Ohm’s law for a two-component plasma which includes the gravitomagnetic force terms even in the case of quasi-neutrality has been derived. The equations that describe the electromagnetic processes in a plasma surrounding a neutron star are obtained by using the general relativistic form of Maxwell equations in a geometry of slow rotating gravitational object. In addition to the general-relativistic effect first discussed by Khanna and Camenzind (Astron. Astrophys. 307:665, 1996) we predict a mechanism of the generation of azimuthal current under the general relativistic effect of dragging of inertial frames on radial current in a plasma around neutron star. The azimuthal current being proportional to the angular velocity ω of the dragging of inertial frames can give valuable contribution on the evolution of the stellar magnetic field if ω exceeds 2.7×1017(n/σ) s−1 (n is the number density of the charged particles, σ is the conductivity of plasma). Thus in general relativity a rotating neutron star, embedded in plasma, can in principle generate axial-symmetric magnetic fields even in axisymmetry. However, classical Cowling’s antidynamo theorem, according to which a stationary axial-symmetric magnetic field can not be sustained against ohmic diffusion, has to be hold in the general-relativistic case for the typical plasma being responsible for the rotating neutron star.  相似文献   

10.
The electromagnetic properties of neutron stars (pulsars) are studied. It is shown that taking the presence of two angular rotation velocities of the components of neutron stars and the first corrections to the general theory of relativity into account in the equations of hydrodynamic equilibrium for the plasma and in Maxwell’s equations leads to the generation of toroidal magnetic fields in the depths of a neutron star. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 97–101 (February 2006).  相似文献   

11.
We study the effect of the neutron star spin–kick velocity alignment observed in young radio pulsars on the coalescence rate of binary neutron stars. Two scenarios are considered for neutron star formation: when the kick is always present, and when it is small or absent if a neutron star is formed in a binary system as a result of electron-capture degenerate core collapse. The effect is shown to be especially strong for large kick amplitudes and tight alignments, reducing the expected galactic rate of binary neutron star coalescence compared to calculations with randomly directed kicks. The spin–kick correlation also leads to a much narrower neutron star spin–orbit misalignment.  相似文献   

12.
We present computed spectra, as seen by a distant observer, from the accretion disc around a rapidly rotating neutron star. Our calculations are carried out in a fully general relativistic framework, with an exact treatment of rotation. We take into account the Doppler shift, gravitational redshift and light-bending effects in order to compute the observed spectrum. We find that light bending significantly modifies the high-energy part of the spectrum. Computed spectra for slowly rotating neutron stars are also presented. These results would be important for modelling the observed X-ray spectra of low-mass X-ray binaries containing fast-spinning neutron stars.  相似文献   

13.
The spatial distribution of the youngest pulsars, with a characteristic age of less than 12,000 years, is considered. All the pulsars except for the pulsar in the Crab Nebula lie in groups of young OB stars. It is suggested that the precursor of the Crab pulsar was a rapidly rotating, massive OB star. The group of young massive stars from which the fast-moving star was ejected is indicated. Estimates of the age of the precursor of the Crab pulsar and of the age of the group of young stars from which it was ejected favor this hypothesis. It is concluded that the fast-moving star must have acquired a high velocity due to the dynamical evolution of the young stellar group.  相似文献   

14.
The phenomenon of pulsars is considered as the evidence for existence of black holes in neutron and quark stars. Within the framework of the degenerated star model with black-hole interior the existence of millisecond pulsars withP<0.5 ms and single pulsars with negative derivative of the period were predicted. The anisotropic accretion of neutron (or quark) star matter on to a rotating black hole leads to the formation of directed radiation (projector), which makes heat spots at surface (volcanos), that explains the nature of pulsating radiation and the complicated structure of impulses. This model gives both the mechanism of self-acceleration of degenerated star rotation (mass accretion on to the internal black hole) producing millisecond pulsars and also the mechanism of significant deceleration of rotation (ejection of neutral mass through a volcanic crater), leading to long-periodic X-ray pulsars. The black hole produces high densities and temperatures of the degenerated star mass that transforms gradually the neutron star into quark star (Cygnus X-3).  相似文献   

15.
We study the oscillations of the angular velocity of pulsars, obtaining an equation for the angular velocity and its derivative taking account of the curvature of vortices. We show that this equation has a quasisinusoidal solution and find the period of these oscillations. We show that the estimates for the value of the periods for various models of neutron stars give quantities of the order of tens of days, which is in agreement with the observations of the quasi-periodic oscillations and fluctuations of the angular velocity of pulsars.Translated fromAstrofizika, Vol. 38, No. 2, 1995.  相似文献   

16.
Using time evolutions of the relevant linearized equations, we study non-axisymmetric oscillations of rapidly rotating and superfluid neutron stars. We consider perturbations of Newtonian axisymmetric background configurations and account for the presence of superfluid components via the standard two-fluid model. Within the Cowling approximation, we are able to carry out evolutions for uniformly rotating stars up to the mass-shedding limit. This leads to the first detailed analysis of superfluid neutron star oscillations in the fast rotation regime, where the star is significantly deformed by the centrifugal force. For simplicity, we focus on background models where the two fluids (superfluid neutrons and protons) corotate, are in β-equilibrium and co-exist throughout the volume of the star. We construct sequences of rotating stars for two analytical model equations of state. These models represent relatively simple generalizations of single fluid, polytropic stars. We study the effects of entrainment, rotation and symmetry energy on non-radial oscillations of these models. Our results show that entrainment and symmetry energy can have a significant effect on the rotational splitting of non-axisymmetric modes. In particular, the symmetry energy modifies the inertial mode frequencies considerably in the regime of fast rotation.  相似文献   

17.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

18.
The gravitational radiation from millisecond pulsars owing to glitches in their angular velocity is examined. It is assumed that the energy transferred from interior superfluid regions to the crust of a neutron star is converted into gravitational wave energy by damping oscillations of the matter in the star. The gravitational wave intensity and amplitude are calculated for fourteen millisecond pulsars. Gravitational radiation can explain the observed spin-down of millisecond pulsars and an estimate is given for the magnetic field at which the proposed mechanism predominates in the spin-down of these pulsars. __________ Translated from Astrofizika, Vol. 51, No. 3, pp. 479–486 (August 2008).  相似文献   

19.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

20.
Pulsars have been recognized to be normal neutron stars, but sometimes have been argued to be quark stars. Submillisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. We focus on the formation of such submillisecond pulsars in this paper. A new approach to the formation of a submillisecond pulsar (quark star) by means of the accretion-induced collapse (AIC) of a white dwarf is investigated. Under this AIC process, we found that: (i) almost all newborn quark stars could have an initial spin period of ∼0.1 ms; (ii) nascent quark stars (even with a low mass) have a sufficiently high spin-down luminosity and satisfy the conditions for pair production and sparking process and appear as submillisecond radio pulsars; (iii) in most cases, the times of newborn quark stars in the phase with spin period <1 (or <0.5) ms are long enough for the stars to be detected.
As a comparison, an accretion spin-up process (for both neutron and quark stars) is also investigated. It is found that quark stars formed through the AIC process can have shorter periods (≤0.5 ms), whereas the periods of neutron stars formed in accretion spin-up processes must be longer than 0.5 ms. Thus, if a pulsar with a period shorter than 0.5 ms is identified in the future, it could be a quark star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号