首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Geostrophic drag coefficients are obtained from direct measurements of the momentum flux and from an objective analysis of the synoptic pressure field by the method of least squares. At a site in the Kiel Bight, a mean geostrophic drag coefficient c g = 0.0223 was obtained with near neutral/ slightly unstable conditions and a surface Rossby Number of 1.2 × 109.Contribution of the sonderforschungsbereich Meeresforschung Hamburg der Deutschen Forschungsgemeinschaft, Hamburg, F.R.G.  相似文献   

2.
A two-dimensional mesoscale model has been developed to simulate the air flow over the Gulf Stream area where typically large gradients in surface temperature exist in the winter. Numerical simulations show that the magnitude and the maximum height of the mesoscale circulation that develops downwind of the Gulf Stream depends on both the initial geostrophic wind and the large-scale moisture. As expected, a highly convective Planetary Boundary Layer (PBL) develops over this area and it was found that the Gulf Stream plays an important role in generating the strong upward heat fluxes causing a farther seaward penetration as cold air advection takes place. Numerical results agree well with the observed surface fluxes of momentum and heat and the mesoscale variation of vertical velocities obtained using Doppler Radars for a typical cold air outbreak. Precipitation pattern predicted by the numerical model is also in agreement with the observations during the Genesis of Atlantic Lows Experiment (GALE).List of Symbols u east-west velocity [m s–1] - v north-south velocity [m s–1] - vertical velocity in coordinate [m s–1] - w vertical velocity inz coordinate [m s–1] - gq potential temperature [K] - q moisture [kg kg–1] - scaled pressure [J kg–1 K–1] - U g the east-south component of geostrophic wind [m s–1] - V g the north-south component of geostrophic wind [m s–1] - vertical coordinate following terrain - x east-west spatial coordinate [m] - y north-south spatial coordinate [m] - z vertical spatial coordinate [m] - t time coordinate [s] - g gravity [m2 s–1] - E terrain height [m] - H total height considered in the model [m] - q s saturated moisture [kg kg–1] - p pressure [mb] - p 00 reference pressure [mb] - P precipitation [kg m–2] - vertical lapse rate for potential temperature [K km–1] - L latent heat of condensation [J kg–1] - C p specific heat at constant pressure [J kg–1 K–1] - R gas constant for dry air [J kg–1 K–1] - R v gas constant for water vapor [J kg–1 K–1] - f Coriolis parameter (2 sin ) [s–1] - angular velocity of the earth [s–1] - latitude [o] - K H horizontal eddy exchange coefficient [m2 s–1] - t integration time interval [s] - x grid interval distance inx coordinate [m] - y grid interval distance iny coordinate [m] - adjustable coefficient inK H - subgrid momentum flux [m2 s–2] - subgrid potential temperature flux [m K s–1] - subgrid moisture flux [m kg kg–1 s–1] - u * friction velocity [m s–1] - * subgrid flux temperature [K] - q * subgrid flux moisture [kg kg–1] - w * subgrid convective velocity [m s–1] - z 0 surface roughness [m] - L Monin stability length [m] - s surface potential temperature [K] - k von Karman's constant (0.4) - v air kinematic viscosity coefficient [m2 s–1] - K M subgrid vertical eddy exchange coefficient for momentum [m2 s–1] - K subgrid vertical eddy exchange coefficient for heat [m2 s–1] - K q subgrid vertical eddy exchange coefficient for moisture [m2 s–1] - z i the height of PBL [m] - h s the height of surface layer [m]  相似文献   

3.
Summary The effect of white capping on the spectral energy balance of surface waves is investigated by expressing the white-cap interactions in terms of an equivalent ensemble of random pressure pulses. It is shown first that the source function for any non-expansible interaction process which is weak-in-the-mean is quasi-linear. In the case of white capping, the damping coefficient is then shown to be proportional to the square of the frequency, provided the wave scales are large compared with the white-cap dimensions. The remaining free factor is determined indirectly from consideration of the spectral energy balance. The proposed white-capping dissipation function is consistent with the structure of the energy balance derived from JONSWAP, and the existence of a –5 spectrum governed by a non-local energy balance between the atmospheric input, the nonlinear energy transfer and dissipation. However, closure of the energy balance involves hypotheses regarding the structure of the atmospheric input function which need to be tested by further measurements. The proposed set of source functions may nevertheless be useful for numerical wave-prediction. According to the model, nearly all the momentum transferred across the air-sea interface enters the wave field. For fetchlimited and fully developed spectra in a stationary, uniform wind field, the drag coefficient remains approximately constant. However, for more general wind conditions, this will not be the case and the wave spectrum should be included in an accurate parameterisation of the air-sea momentum transfer.Contribution from the Sonderforschungsbereich Meeresforschung Hamburg of the Deutsche Forschungsgemeinschaft.  相似文献   

4.
The impact of sea waves on sensible heat and momentum fluxes is described. The approach is based on the conservation of heat and momentum in the marine atmospheric surface layer. The experimental fact that the drag coefficient above the sea increases considerably with increasing wind speed, while the exchange coefficient for sensible heat (Stanton number) remains virtually independent of wind speed, is explained by a different balance of the turbulent and the wave-induced parts in the total fluxes of momentum and sensible heat.Organised motions induced by waves support the wave-induced stress which dominates the surface momentum flux. These organised motions do not contribute to the vertical flux of heat. The heat flux above waves is determined, in part, by the influence of waves upon the turbulence diffusivity.The turbulence diffusivity is altered by waves in an indirect way. The wave-induced stress dominates the surface flux and decays rapidly with height. Therefore the turbulent stress above waves is no longer constant with height. That changes the balance of the turbulent kinetic energy and of the dissipation rate and, hence the diffusivity.The dependence of the exchange coefficient for heat on wind speed is usually parameterized in terms of a constant Stanton number. However, an increase of the exchange coefficient with wind speed is not ruled out by field measurements and could be parametrized in terms of a constant temperature roughness length. Because of the large scatter, field data do not allow us to establish the actual dependence. The exchange coefficient for sensible heat, calculated from the model, is virtually independent of wind speed in the range of 3–10 ms-1. For wind speeds above 10 ms-1 an increase of 10% is obtained, which is smaller than that following from the constant roughness length parameterization.The investigation was in part supported by the Netherlands Geosciences Foundation (GOA) with financial aid from the Netherlands Organization for Scientific Research (NWO).  相似文献   

5.
Saline circulation forced by fresh water alone is studied for a broad region of parameter space by varying the amplitude and profile of evaporation minus precipitation, the vertical and horizontal mixing of salt, vertical and horizontal dissipation of momentum, and the horizontal resolution. The model is a modified Bryan-Cox model with a freshwater flux as the natural boundary condition for the salinity balance. For a model forced by a linear freshwater flux profile, as the amplitude of freshwater flux is increased from 0.01 m year –1 to 1 m year–1 with other parameters fixed, the system evolves from a steady state of no oscillation to a state of periodic oscillation whose frequency increases almost linearly with the amplitude of freshwater flux. When the freshwater flux is fixed and the vertical mixing coefficient is increased from 0.5 to 2.5 cm2s–1, the system evolves from a steady state to a state of single-period oscillation, chaotic, a single period, and finally to a chaotic state when the vertical mixing coefficient is larger than 2 cm2 s1. One set of numerical experiments forced by a cosine shape of freshwater flux clearly reveals the transition from a state of single period oscillation to period doubling, period quadrupling, and a state of chaotic oscillation. Simple scaling analysis and numerical experiments indicate that the strength of the meridional overturning increases with the square-root of the vertical mixing and the 1/4 power of the freshwater flux. The mean sea surface salinity (deviation from 35 psu) increases with the 3/4 power of the freshwater flux and decreases with the 1/2 power of the vertical salt mixing.Contribution No. 8191 from the Woods Hole Oceanographic Institution  相似文献   

6.
On mountain wave drag over complex terrain   总被引:1,自引:0,他引:1  
Summary Mountain wave drag is calculated for rotating, stratified, nonhydrostatic Boussinesq flow over a mountain ridge using linear theory for a variety of mountain profiles representing complex/irregular terrain. The inclusion of a sinusoidal corrugation to the familiar witch-of-Agnesi profile creates a stegosaurus profile. The associated drag is greatly enhanced for mesoscale mountains when the corrugation wave-number matches that for the dominant inertia-gravity wave contribution to the cross-mountain surface pressure gradient. Similarly, increasing the jaggedness (by decreasing the exponentb) increases the drag for mesoscale mountains whose topographic spectral intensity,M(k), has the form of a power law:M(k)=mk –b wherek is the zonal wavenumber.Spectral analysis of one-kilometer resolution topographic data for the Appalachian Mountains suggests that a power law profile withb=1.7 accurately represents the topographic spectral intensity and that it yields good estimates of the drag.The application of these results to the parameterization of mountain wave drag in general circulation models is discussed.With 7 Figures  相似文献   

7.
Mean atmospheric circulation, moisture budget and net heat exchange were studied during a pre-monsoon period (18th March to 3rd May, 1988), making use of the data collected on board Akademik Korolev in the central equatorial and southern Arabian Sea region. The net heat exchange (R n ) is found to be about 20 W m–2 for a small area (0–4° N; 55–60° E), 50% less than the dimatological value. The mean value of net radiation (140 W m–2) is less than the climatological value, which was due to higher cloud amount. The higher SST enhanced both the latent and sensible heat fluxes.The mean atmospheric circulation obtained from the upper air data is quite convincing. The mean exchange coefficient (C e ) estimated from the moisture budget is about 1.0 × 10–3 for a wind speed of 4 m s–1. This value is slightly lower than that obtained by the usual methods.National Institute of Oceanography, RC, 52-Kirlampudi layout, Visakhapatnam — 530 023.India Meteorological Department, Gauhati.  相似文献   

8.
A model is developed to simulate the potential temperature and the height of the mixed layer under advection conditions. It includes analytic expressions for the effects of mixed-layer conditions upwind of the interface between two different surfaces on the development of the mixed layer downwind from the interface. Model performance is evaluated against tethersonde data obtained on two summer days during sea breeze flow in Vancouver, Canada. It is found that the mixed-layer height and temperature over the ocean has a small but noticeable effect on the development of the mixed layer observed 10 km inland from the coast. For these two clear days, the subsidence velocity at the inversion base capping the mixed layer is estimated to be about 30 mm s–1 from late morning to late afternoon. When the effects of subsidence are included in the model, the mixed-layer height is considerably underpredicted, while the prediction for the mean potential temperature in the mixed layer is considerably improved. Good predictions for both height and temperature can be obtained when values for the heat entrainment ratio,c, 0.44 and 0.68 for these two days respectively for the period from 1000 to 1300 LAT, were used. These values are estimated using an equation including the additional effects on heat entrainment due to the mechanical mixing caused by wind shear at the top of the mixed layer and surface friction. The contribution of wind shear to entrainment was equal to, or greater than, that from buoyant convection resulting from the surface heat flux. Strong wind shear occurred near the top of the mixed layer between the lower level inland flow and the return flow aloft in the sea breeze circulation.Symbols c entrainment parameter for sensible heat - c p specific heat of air at constant pressure, 1010 J kg–1 K–1 - d 1 the thickness of velocity shear at the mixed-layer top, m - Q H surface sensible heat flux, W m–2 - u m mean mixed-layer wind speed, m s–1 - u * friction velocity at the surface, m s–1 - w subsidence velocity, m s–1 - W subsidence warming,oC s–1 - w e entrainment velocity, m s–1 - w * convection velocity in the mixed layer, m s–1 - x downwind horizontal distance from the water-land interface, m - y dummy variable forx, m - Z height above the surface, m - Z i height of capping inversion, m - Z m mixed-layer depth, i.e.,Z i–Zs, m - Z s height of the surface layer, m - lapse rate of potential temperature aboveZ i, K m–1 - potential temperature step atZ i, K - u h velocity step change at the mixed-layer top - m mean mixed-layer potential temperature, K  相似文献   

9.
Numerical simulation of turbulent convective flow over wavy terrain   总被引:1,自引:1,他引:0  
By means of a large-eddy simulation, the convective boundary layer is investigated for flows over wavy terrain. The lower surface varies sinusoidally in the downstream direction while remaining constant in the other. Several cases are considered with amplitude up to 0.15H and wavelength ofH to 8H, whereH is the mean fluid-layer height. At the lower surface, the vertical heat flux is prescribed to be constant and the momentum flux is determined locally from the Monin-Obukhov relationship with a roughness lengthz o=10–4 H. The mean wind is varied between zero and 5w *, wherew * is the convective velocity scale. After rather long times, the flow structure shows horizontal scales up to 4H, with a pattern similar to that over flat surfaces at corresponding shear friction. Weak mean wind destroys regular spatial structures induced by the surface undulation at zero mean wind. The surface heating suppresses mean-flow recirculation-regions even for steep surface waves. Short surface waves cause strong drag due to hydrostatic and dynamic pressure forces in addition to frictional drag. The pressure drag increases slowly with the mean velocity, and strongly with /H. The turbulence variances increase mainly in the lower half of the mixed layer forU/w *>2.  相似文献   

10.
A Forest SO2 Absorption Model (ForSAM) was developed to simulate (1) SO2 plume dispersion from an emission source, (2) subsequent SO2 absorption by coniferous forests growing downwind from the source. There are three modules: (1) a buoyancy module, (2) a dispersion module, and (3) a foliar absorption module. These modules were used to calculate hourly abovecanopy SO2 concentrations and in-canopy deposition velocities, as well as daily amounts of SO2 absorbed by the forest canopy for downwind distances to 42 km. Model performance testing was done with meteorological data (including ambient SO2 concentrations) collected at various locations downwind from a coal-burning power generator at Grand Lake in central New Brunswick, Canada. Annual SO2 emissions from this facility amounted to about 30,000 tonnes. Calculated SO2 concentrations were similar to those obtained in the field. Calculated SO2 deposition velocities generally agreed with published values.Notation c air parcel cooling parameter (non-dimensional) - E foliar absorption quotient (non-dimensional) - f areal fraction of foliage free from water (non-dimensional) - f w SO2 content of air parcel - h height of the surface layer (m) - H height of the convective mixing layer (m) - H stack stack height (m) - k time level - k drag coefficient of drag on the air parcel (non-dimensional) - K z eddy viscosity coefficient for SO2 (m2·s–1) - L Monin-Obukhov length scale (m) - L A single-sided leaf area index (LAI) - n degree-of-sky cloudiness (non-dimensional) - N number of parcels released with every puff (non-dimensional) - PAR photosynthetically active radiation (W m–2) - Q emission rate (kg s–2) - r b diffusive boundary-layer resistance (s m–1) - r c canopy resistance (s m–1) - r cuticle cuticular resistance (s m–1) - r m mesophyllic resistance (s m–1) - r s stomatal resistance (s m–1) - r exit smokestack exit radius (m) - R normally distributed random variable with mean of zero and variance of t (s) - u * frictional velocity scale, (m s–1) - v lateral wind vector (m s–1) - v d SO2 dry deposition velocity (m s–1) - VCD water vapour deficit (mb) - z can mean tree height (m) - Z zenith position of the sun (deg) - environmental lapse rate (°C m–1) - dry adiabatic lapse rate (0.00986°C m–1) - von Kármán's constant (0.04) - B vertical velocities initiated by buoyancy (m s–1) - canopy extinction coefficient (non-dimensional) - ()a denotes ambient conditions - ()can denotes conditions at the top of the forest canopy - ()h denotes conditions at the top of the surface layer - ()H denotes conditions at the top of the mixed layer - ()s denotes conditions at the canopy surface - ()p denotes conditions of the air parcels  相似文献   

11.
For 390 ten-minute samples of turbulent flux, made with a trivane above a lake, the vertical alignment is determined within 0.1 ° through azimuth-dependent averaging. One degree of instrumental misalignment is found to produce an average tilt error of 9 ± 4% for momentum flux, and 4 ± 2% for heat flux. The tilt error in the vertical momentum flux depends mainly ons u/u*, and cannot be much diminished with impunity by high-pass pre-filtering of the turbulence signals. The effects of rain on trivane measurements of vertical velocity are shown to be negligible at high wind speeds, and adaptable to correction in any case.The normalized vertical velocity variance,s w/u*, appears to be proportional to the square root ofz/L for unstable stratification. For a wind speed range of 2 to 15 m s–1, the eddy correlation stresses measured at 4- and 8-m heights can be reasonably well estimated by using a constant drag coefficientC d=1.3 X 10-3, while cup anemometer profile measurements give an overestimate of eddy stress at high wind speeds. A good stress estimate is also obtained from the elevation variance; it is suggested that trivane measurement of this variance might be made from a mobile platform, e.g., a moderately stabilized spar buoy.  相似文献   

12.
Neutrally buoyant atmospheric surface-layer flow over a thin vertical wall has been studied using a turbulence closure scheme designed specifically to address flow problems containing high shears. The turbulent flow model consists of a general solution of the time averaged, steady state, twodimensional Navier-Stokes equations, where theE- turbulence model has been used to close the system of equations. Model output compares favorably with measurements made in both a full-scale field study and in an atmospheric wind tunnel. In the simulation of flow over a solid wall, two recirculation eddies are produced. The smallest eddy is located windward of the wall with a separation point located atx/h=–0.8, and the largest is located in the lee of the wall atx/h=5.8. Immediately downwind of the wall top, the turbulent kinetic energy, the energy dissipation rate, and the momentum flux all reach a local maximum. These peak values generally maintain their height positionz/h=1.0, but decrease progressively downwind. The turbulent viscosity is strongly modified under the influence of the wall, with a local maximum forming in the lee of the wall top, and a local minimum forming at a heightz/h=2.0 above the lee recirculation eddy. The surface momentum flux reduction due to the presence of the wall begins atx/h=–10.0. Minimum zero fluxes occur at the surface separation points, and a local peak in momentum flux is produced at the centers of each recirculation eddy. Downwind of the wall, the modeled surface flux reaches an equilibrium at roughlyx/h=30.0.  相似文献   

13.
A statistically relevant correlation between the reaction rate coefficient, k OH, for the OH radical reaction with 161 organic compounds in the gas phase at 300 K, and the corresponding vertical ionisation energies E i,v, reveals two classes of compounds: aromatics where –log(k OH/cm3s-1)3/2E i,v(eV)–2 and aliphatics where –log(k OH/cm3s-1)4/5E i,v(eV)+3. The prediction of the rate coefficient, k OH, for the reaction of OH with organic molecules from the above equations has a probability of about 90%. Assuming a global diurnal mean of the OH radical concentration of 5×105 cm3, the upper limit of the tropospheric half-life of organic compounds and their persistence can be estimated.  相似文献   

14.
The budget equation for carbon dioxide variance can be represented by production, dissipation and flux divergence terms. Each term is measured under near neutral to moderately unstable conditions over vegetated fields. The flux divergence term is about an order of magnitude smaller than production and dissipation terms, though it shows a loss for 0.006 < v < 1 and a gain for 1 < - v < 10. Here, v is the Monin-Obukhov stability parameter including humidity effect. As expected from a closure of the budget, the nondimensional production and dissipation terms are basically identical and represented by the same functional form: (1–16 v )–1/2.  相似文献   

15.
A new algebraic turbulent length scale model is developed, based on previous one-equation turbulence modelling experience in atmospheric flow and dispersion calculations. The model is applied to the neutral Ekman layer, as well as to fully-developed pipe and channel flows. For the pipe and channel flows examined the present model results can be considered as nearly equivalent to the results obtained using the standard k– model. For the neutral Ekman layer, the model predicts satisfactorily the near-neutral Cabauw friction velocities and a dependence of the drag coefficient versus Rossby number very close to that derived from published (G. N. Coleman) direct numerical simulations. The model underestimates the Cabauw cross-isobaric angles, but to a less degree than the cross-isobar angle versus Rossby dependence derived from the Coleman simulation. Finally, for the Cabauw data, with a geostrophic wind magnitude of 10 ms–1, the model predicts an eddy diffusivity distribution in good agreement with semi-empirical distributions used in current operational practice.  相似文献   

16.
For the first time, the exchange coefficient of heat CH has been estimated from eddy correlation of velocity and virtual temperature fluctuations using sonic anemometer measurements made at low wind speeds over the monsoon land atJodhpur (26°18' N, 73°04' E), a semi arid station. It shows strong dependence on wind speed, increasing rapidly with decreasing wind speed, and scales according to a power law CH = 0.025U10 -0.7 (where U10 is the mean wind speed at 10-m height). A similar but more rapid increase in the drag coefficient CDhas already been reported in an earlier study. Low winds (<4 m s-1) are associated with both near neutral and strong unstable situations. It is noted that CH increases with increasing instability. The present observations best describe a low wind convective regime as revealed in the scaling behaviour of drag, sensible heat flux and the non-dimensional temperature gradient. Neutral drag and heat cofficients,corrected using Monin–Obukhov (M–O) theory, show a more uniform behaviour at low wind speeds in convective conditions, when compared with the observed coefficients discussed in a coming paper.At low wind convective conditions, M-O theory is unable to capture the observed linear dependence of drag on wind speed, unlike during forced convections. The non-dimensional shear inferred from the present data shows noticeable deviations from Businger's formulation, a forced convection similarity. Heat flux is insensitive to drag associated with weak winds superposed on true free convection. With heat flux as the primary variable, definition of new velocity scales leads to a new drag parameterization scheme at low wind speeds during convective conditionsdiscussed in a coming paper.  相似文献   

17.
A numerical model of airflow in the lowest 50–100 m of the atmosphere above changes in surface roughness and temperature or heat flux has been developed based on boundary layer approximations, the Businger-Dyer hypotheses for the non-dimensional wind shear and heat flux and a mixing length hypothesis.Results have been obtained for several situations, in particular, airflow with neutral upstream conditions encountering a step change in surface temperature or heat flux with no roughness change. In these cases large increases in shear stress at the outer edge of the internal boundary layer are predicted. The case of unstable upstream flow encountering a step change to zero heat flux is also considered.Two situations that may be encountered near the shores of the Great Lakes are considered.Notation B Businger-Dyer constant (= 16.0) in form for M, H - c p Specific heat at constant pressure - g Acceleration due to gravity - H Upward vertical heat flux - H 0 , H 1 Surface heat fluxes for x < 0, x 0 - k von Kármán's constant ( = 0.4) - l Mixing length - L Monin-Obukhov length - L 0 Upstream value of L - m Ratio of roughness lengths (= z 1/z 0) - RL * Non-dimensional parameter, see Equations (20, 22 and 24) - RL 1 * Same as RL * but with z 1 scaling (= mRL *) - T Scaled temperature - T 0 (z) Upstream temperature profile - u 0, u 1(x) Surface friction velocities for x < 0, x 0 - U, W Horizontal and vertical mean velocities - U 0 (z) Upstream velocity profile - x, z Horizontal and vertical coordinates - z i Local roughness length  相似文献   

18.
Eddy flux measurements over the ocean and related transfer coefficients   总被引:1,自引:0,他引:1  
Eddy correlation measurements of vertical turbulent fluxes made during AMTEX 1975 are used to assess the reliability of flux prediction from established bulk transfer relations, using both surface-layer and planetary boundary-layer formulations. The surface-layer formulae predict momentum and latent heat fluxes to an accuracy comparable to the direct eddy correlation method, using transfer coefficients of C DN (at 10m and in neutral conditions) increasing with wind speed, and a constant C EN - 1.5 × 10 –3 . The data suggest C CHN , for sensible heat, increases significantly with wind speed and is on average 30% lower than C CEN The boundary-layer drag coefficient, C GD , agrees within about 40% of recently published values using a vertically averaged geostrophic wind to the height of the lowest temperature inversion, corrected for trajectory curvature. Values of * / from which C CGH is derived, are in excellent agreement if the published values are modified to account for inappropriate surface temperatures used in their derivation. Preliminary values of C GE are also presented.  相似文献   

19.
From measurements during the Atlantic Trade Wind Experiment (ATEX) 1969, amplitudes and phases of the diurnal harmonic water-temperature variation between the sea surface and 50-m depth and of the semi-diurnal wind variation between 1 and 8 m were obtained. If the vertical diffusion of heat in the ocean is thought to be constant, a coefficient of K= 320 cm2 s–1 in the equation of diffusion fits best the observed data in the mixed layer. However, the measurements point to a decrease of K with depth.The height variation of the semi-diurnal zonal wind wave is caused by the influence of eddy viscosity. Our data are well fitted by results of the equation of diffusion, using the assumption of Lettau (1974) that the transfer coefficient of vertical transport of momentum is not only a function of height but also depends on time because of the semi-diurnal variation of surface stress.  相似文献   

20.
The turbulent heat flux from arctic leads   总被引:2,自引:0,他引:2  
The turbulent transfer of heat from Arctic leads in winter is one of the largest terms in the Arctic heat budget. Results from the AIDJEX Lead Experiment (ALEX) suggest that the sensible component of this turbulent heat flux can be predicted from bulk quantities. Both the exponential relation N = 0.14R x 0.72 and the linear relation N = 1.6 × 10–3 R x+ 1400 fit our data well. In these, N is the Nusselt number formed with the integrated surface heat flux, and R x is the Reynolds number based on fetch across the lead. Because of the similarity between heat and moisture transfer, these equations also predict the latent heat flux. Over leads in winter, the sensible heat flux is two to four times larger than the latent heat flux.The internal boundary layer (IBL) that develops when cold air encounters the relatively warm lead is most evident in the modified downwind temperature profiles. The height of this boundary layer, , depends on the fetch, x, on the surface roughness of the lead, z 0 and on both downwind and upwind stability. A tentative, empirical model for boundary layer growth is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabes% 7aKbqaaiaadQhadaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0JaeqOS% di2aaeWaaeaacqGHsisldaWcaaqaaiaadQhadaWgaaWcbaGaaGimaa% qabaaakeaacaWGmbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGim% aiaac6cacaaI4aaaaOWaaeWaaeaadaWcaaqaaiaadIhaaeaacaWG6b% WaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa% baGaaGimaiaac6cacaaI0aaaaaaa!472D!\[\frac{\delta }{{z_0 }} = \beta \left( { - \frac{{z_0 }}{L}} \right)^{0.8} \left( {\frac{x}{{z_0 }}} \right)^{0.4} \] where L is the Obukhov length based on the values of the momentum and sensible heat fluxes at the surface of the lead, and is a constant reflecting upwind stability.Velocity profiles over leads are also affected by the surface nonhomogeneity. Besides being warmer than the upwind ice, the surface of the lead is usually somewhat rougher. The velocity profiles therefore tend to decelerate near the surface, accelerate in the mid-region of the IBL because of the intense mixing driven by the upward heat flux, and rejoin the upwind profiles above the boundary layer. The profiles thus have distinctly different shapes for stable and unstable upwind conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号