首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evaluation of the planetary Fourier spectrometer performance at Mars is presented by comparing an average spectrum with the ISO spectrum published by Lellouch et al. [2000. Planet. Space Sci. 48, 1393.]. First, the average conditions of Mars atmosphere are compared, then the mixing ratios of the major gases are evaluated. Major and minor bands of CO2 are compared, from the point of view of features characteristics and bands depth. The spectral resolution is also compared using several solar lines. The result indicates that PFS radiance is valid to better than 1% in the wavenumber range 1800-4200 cm−1 for the average spectrum considered (1680 measurements). The PFS monochromatic transfer function generates an overshooting on the left-hand side of strong narrow lines (solar or atmospheric). The spectral resolution of PFS is of the order of 1.3 cm−1 or better. A large number of narrow features to be identified are discovered.  相似文献   

2.
Cristian Carli  Maria Sgavetti 《Icarus》2011,211(2):1034-1048
In spectroscopic remote sensing for the exploration of the surface compositions of Earth and terrestrial planets, reflectance spectra with very low spectral contrast and even devoid of diagnostic absorption bands can be observed, which make the interpretation of the component minerals ambiguous. Using selected examples of terrestrial rock samples from intrusive and effusive geologic systems, we discuss compositional and textural properties related to these particular spectral shapes. We show that: (1) this spectral behaviour is common for coarse grains of multimineral rocks, where the optical coupling is expected to occur between welded mineral particles; (2) it is emphasised by the presence of opaque minerals with various compositions, such as ulvospinel, magnetite and chromite in effusive rock groundmass and in intrusive rocks; (3) it is controlled by the number of silicate phases within which the FeO is distributed, irrespective of the total iron content in the rock: a rock composition with a high number of iron-bearing minerals producing this kind of low contrast, almost featureless spectra is indicated here as “critical mode”; (4) it is also strongly intensified by aqueous alteration of silicates.These observations suggest unpredictable combinations of several different petrographic variables affecting the spectra of some compact rocks, and stimulate both targeted studies to quantitatively relate spectral and petrographic parameters, and the development of appropriate methods of spectral decomposition. Our ongoing work is at present focused on the spectroscopic effects of the FeO concentration in transparent neutral plagioclase, the different compositions of the opaque neutral minerals, and the iron bearing amorphous phases.We also discuss the analogy between the rocks used in the analysis reported here and the crustal rock compositions observed on Mars and inferred for Mercury as well as the compatibility of the factors responsible for the low spectral contrast of terrestrial rock samples with the factors expected for the two planets. We observe that a coarse-grained surface and a composition approaching a critical mode could explain the featureless Acidalia spectra on Mars, and suggest that the still open questions about Mercury’s surface regolith characteristics and composition do not exclude a priori the contribution of some of the factors examined in this paper to the peculiar surface properties of this planet.  相似文献   

3.
Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, M?ssbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature M?ssbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. M?ssbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water in ferric sulfate-bearing montmorillonite. Reflectance spectra of ferric sulfate-bearing montmorillonite include a strong 3-micrometers band that is more resistant to dry atmospheric conditions than the 3-micrometers band in spectra of similarly prepared ferrihydrite-bearing montmorillonites.  相似文献   

4.
Both laboratory measurements and theory indicate that CO2 should be a common component in interstellar ices. We show that the exact band position, width, and profile of the solid-state 12CO2 infrared bands near 3705, 3600, 2340, and 660 cm-1 (2.70, 2.78, 4.27, and 15.2 micrometers) and the 13CO2 band near 2280 cm-1 (4.39 micrometers) are dependent on the matrix in which the CO2 is frozen. Measurements of these bands in astronomical spectra can be used to determine column densities of solid-state CO2 and provide important information on the physical conditions present in the ice grains of which the CO2 is a part. Depending on the composition of the ice, the CO2 asymmetric stretching band was observed to vary from 2328.7 to 2346.0 cm-1 and have full widths at half-maxima (FWHMs) ranging from 4.7 to 29.9 cm-1. The other CO2 bands showed similar variations. Both position and width are also concentration dependent. Absorption coefficients were determined for the five CO2 bands. These were found to be temperature independent for CO2 in CO and CO2 matrices but varied slightly with temperature for CO2 in H2O-rich ices. For all five bands this variation was found to be less than 15% from 10 to 150 K, the temperature at which H2O ice sublimes. A number of parameters associated with the physical behavior of CO2 in CO2- and H2O-rich ices were also determined. The CO2-CO2 surface binding energy in pure CO2 ices is found to be (delta Hs/k) = 2690 +/- 50 K. CO2-H2O and CO-H2O surface binding energies were determined to be (delta Hs/k) = 2860 +/- 200 K and 1740 +/- 100 K, respectively. Under our experimental conditions, CO2 condenses in measurable quantities into H2O-rich ices at temperatures up to 100 K, only slightly higher than the temperature at which pure CO2 condenses. Once frozen into an H2O-rich ice, the subsequent loss of CO2 upon warming is highly dependent on concentration. For ices with H2O/CO2 > 20, the CO is physically trapped within the H2O lattice, and little CO2 is lost until the sublimation temperature of the H2O matrix is reached. In contrast, in ices having H2O/CO2 < 5, the CO2 remains only to temperatures of about 90 K. Above this point the CO2 readily diffuses out of the H2O matrix. These results suggest that two different forms of H2O lattice are produced. The implications of these data for cometary models and our understanding of cometary formation are considered.  相似文献   

5.
We present the 2320-2050 cm-1 (4.31-4.88 micrometers) infrared spectra of 16 solid-state nitriles, isonitriles, and related compounds in order to facilitate the assignment of absorption features in a spectral region now becoming accessible to astronomers for the first time through the Infrared Space Observatory (ISO). This frequency range spans the positions of the strong C triple bond N stretching vibration of these compounds and is inaccessible from the ground due to absorption by CO2 in the terrestrial atmosphere. Band positions, profiles, and intrinsic strengths (A values) were measured for compounds frozen in Ar and H2O matrices at 12 K. The molecular species examined included acetonitrile, benzonitrile (phenylcyanide), 9-anthracenecarbonitrile, dimethylcyanamide, isopropylnitrile (isobutyronitrile), methylacrylonitrile, crotononitrile, acrylonitrile (vinyl cyanide), 3-aminocrotononitrile, pyruvonitrile, dicyandiamide, cyanamide, n-butylisocyanide, methylisocyanoacetate, diisopropylcarbodiimide, and hydrogen cyanide. The C triple bond N stretching bands of the majority of nitriles fall in the 2300-2200 cm-1 (4.35-4.55 micrometers) range and have similar positions in both Ar and H2O matrices, although the bands are generally considerably broader in the H2O matrices. In contrast, the isonitriles and a few exceptional nitriles and related species produce bands at lower frequencies spanning the 2200-2080 cm-1 (4.55-4.81 micrometers) range. These features also have similar positions in both Ar and H2O matrices, and the bands are broader in the H2O matrices. Three of the compounds (pyruvonitrile, dicyandiamide, and cyanamide) show unusually large shifts of their C triple bond N stretching frequencies when changing from Ar to H2O matrices. We attribute these shifts to the formation of H2O:nitrile complexes with these compounds. The implications of these results for the identification of the 2165 cm-1 (4.62 micrometers) "XCN" interstellar feature and the 4550 cm-1 (2.2 micrometers) feature of various objects in the solar system are discussed.  相似文献   

6.
Abstract— Reflectance spectra of splits 92 and 271 from the Martian meteorite Allan Hills (ALH) 84001 are presented and analyzed in this paper. Although the visible and infrared spectra of both chips show that the dominant mineralogy is low-Ca pyroxene, the focus here is on identification of the minor constituents. Infrared spectra measured at multiple spots along the surface of chips 92 and 271 show subtle spectroscopic variations due to changes in the low-Ca pyroxene texture and composition and to the presence of secondary minerals. Absorption bands observed near 0.93 and 1.95 μm are characteristic of low-Ca pyroxene. Strong mid-infrared reststrahlen bands are observed near 9 and 19.5 μm in all surface spectra, and additional bands near 7, 10.5, 11.4, 17.8, 20.5 and 23 μm are variable depending on the low-Ca pyroxene texture and the presence of secondary minerals. Selected spectra exhibit carbonate features near 4, 6.4–7.1 and 11.3 μm. Detailed analysis of these carbonate features indicates the presence of Mg-Fe carbonate, which is consistent with petrographic studies. Many of these spectra with strong carbonate features exhibit a magnetite feature near 17.9 μm and a shoulder near 20.5 μm that cannot be uniquely ascribed to one mineral. Spectroscopic identification of the minor carbonate and magnetite minerals in this probable piece of Mars indicates that detection of small amounts of these minerals of possible biological significance will be possible using infrared hyperspectral analyses of the Martian surface. Also of importance for remote sensing on Mars is the result that Mg, Fe and Mg-Fe carbonates in a low-Ca pyroxene matrix should be distinguishable from one another in the spectral region measured by the thermal emmitance spectrometer (TES).  相似文献   

7.
This paper reviews spectra obtained with the SWS on board of ISO of dust shells around O-rich objects. These spectra reveal the presence of many new emission features between 10 and 45 μm. These bands are generally much narrower than the well-known 10 and 20 μm silicates features. The strength of these features relative to the underlying broad continuum varies from source to source (≅ 5-50%). The 10 μm region shows evidence for the presence of Al2O3 grains. At longer wavelength, the spectra are dominated by features due to crystalline olivine and pyroxene. The exact peak position of these features shows that the emitting grains consist of the Mg-rich end-members of these minerals with an Fe-content of < 10%. The underlying continuum is attributed to amorphous silicate grains. These observations of aluminum-rich and magnesium-rich compounds compare well with the thermodynamic condensation sequence of minerals expected for O-rich outflows. The observations also imply that freeze out (ie., kinetics) of this condensation sequence at different temperatures is an important characteristic of dust formation in these objects. It is suggested that the absence of Fe-rich silicates is a natural consequence of the low temperature at which gaseous Fe reacts with Mg-rich silicates in these outflows, resulting in amorphous grains with little characterizing spectral detail. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Spectrophotometry from 5-10 micrometers (delta lambda/lambda approximately 0.02) of comet Halley was obtained from the Kuiper Airborne Observatory on 1985 December 12.1 and 1986 April 8.6 and 10.5, UT. 8-13 micrometers data were obtained on 17.2 December 1985 from the Nickel Telescope at Lick Observatory. The spectra show a strong broad emission band at 10 micrometers and a weak feature at 6.8 micrometers. We do not confirm the strong 7.5 micrometers emission feature observed by the Vega 1 spacecraft. The 10 micrometers band, identified with silicate materials, has substructure indicative of crystalline material. The band can be fitted by combining spectra data from a sample of interplanetary dust particles. The primary component of the silicate emission is due to olivine. The 6.8 micrometers emission feature can be due either to carbonates or the C-H deformation mode in organic molecules. The lack of other emission bands is used to place limits on the types of organic molecules responsible for the emission observed by others at 3.4 micrometers. Color temperatures significantly higher than the equilibrium blackbody temperature indicate that small particles are abundant in the coma. Significant spatial and temporal variations in the spectrum have been observed and show trends similar to those observed by the spacecraft and from the ground. Temporal variability of the silicate emission relative to the 5-8 micrometers continuum suggests that there are at least two physically separated components of the dust.  相似文献   

9.
Spectroscopic analysis of carbonate-bearing samples from a variety of terrestrial environments provides important insights into spectroscopy-based investigations of Mars designed to detect the presence of carbonate minerals. In order to better address the spectral detectability of carbonates on Mars, we examined the spectral reflectance properties of carbonates and carbonate-bearing lithologies from a variety of terrestrial environments, including impact structures (Haughton, St. Martin, Eagle Butte), landslides (Frank), quarrying operations (Hecla), carbonates affected by weathering (Haughton, East German Creek), and sulfide-sulfate-carbonate assemblages (Central Manitoba). The goal is to identify processes and environments that can affect spectroscopy-based carbonate detection, for more detailed follow-on studies. Common carbonates appear to be stable, from a spectroscopic perspective, to various tectonic processes. Iron oxides/hydroxides do not appear to significantly affect spectral detectability of carbonates, as the spectrum-altering effects of these phases are largely restricted to the region below ∼1 μm, while useful carbonate absorption bands occur longward of ∼1.8 μm. Carbonate detection and characterization in the 0.35-2.5-μm region is largely restricted to a single absorption feature in the 2.3-μm region, which can be problematic for robust carbonate identification. While tectonic processes and iron oxide/hydroxide staining do not appear to significantly impair carbonate detection based on the 2.3-μm region absorption band, a number of other factors can affect carbonate detection. These include the fact that this absorption band is weak compared to many other minerals, a number of other minerals also exhibit absorption bands in this wavelength region (leading to possible misidentifications), and that even small abundances of minerals that absorb strongly in this region will reduce the strength of the carbonate absorption band. Identifying the nature of accessory minerals associated with carbonates can be used to constrain possible formation environments. Ongoing research at carbonate-bearing terrestrial analogue sites will continue to provide new insights into the occurrence and detection of carbonates on Mars.  相似文献   

10.
We present an application of a multivariate analyses technique on data returned by the Planetary Fourier Spectrometer (PFS) instrument on board the ESA’s Mars Express (MEX) spacecraft in order to separate the atmospheric contribution from the observed radiation. We observe that Thermal/Far Infrared spectra returned from Mars, covering almost a whole martian year, can be represented by a linear model using a limited set of end-member spectra. We identify the end-members as the suspended mineral dust and water ice clouds, but no surface signature was found. We improve previous studies performed with data from the Thermal Emission Spectrometer (TES) thanks to the higher spectral resolution of PFS. This allows for distinguishing narrow gaseous bands present in the martian atmosphere. Furthermore, the comparison of results from PFS and TES with data collected in 1971 by the Mariner 9 Infrared Interferometer Spectrometer (IRIS) shows an atmospheric dust component with similar spectral behavior. This might indicate homogeneity of the dust source regions over a time period of more than 30 years.  相似文献   

11.
Abstract— In order to explore the nature and history of micrometeorites, we have measured the thermoluminescence (TL) properties of four micrometeorites, three cosmic spherules, and one irregular scoriaceous particle, that we found in a survey of 17 micrometeorites. These micrometeorites have TL sensitivities ranging from 0.017 ± 0.002 to 0.087 ± 0.009 (on a scale normalized to 4 mg of the H3.9 chondrite Dhajala). The four micrometeorites have very similar TL peak temperatures and TL peak widths, and these distinguish them from CI, most CM, CV, CO, and ordinary chondrites. However, the TL properties of these micrometeorites closely resemble those of the unusual CM chondrite MacAlpine Hills (MAC) 87300 and terrestrial forsterites. Heating experiments on submillimeter chips of a CM chondrite and a H5 chondrite suggest that these TL properties are have not been significantly affected by atmospheric passage. Thus we suggest that there is no simple linkage between these micrometeorites and the established meteorite classes, and that forsterite is an important component of these micrometeorites, as it is in many primitive solar system materials.  相似文献   

12.
The results of the analysis of the spectral observations of Mars carried out with the OMEGA spectrometer onboard the Mars Express spacecraft are presented. The data from one of the spectrometer’s channels working in the near-IR spectral range (0.93–2.69 μm) were analyzed. This range includes the characteristic absorption bands of both condensed water phases (ice and frost) and bound water contained in hydrated minerals of the Martial soil. From the 1.93-μm band indicating the presence of these minerals, global maps of the bound-water index have been made. They show a noticeable latitude dependence of the index: the largest values refer to high latitudes (>60°), while they gradually diminish toward the equator. Seasonal variations of the spectral index obtained by the 1.93-μm band are connected with the hydration-dehydration processes occurring in hydrogenous minerals when the temperature of the soil and the relative humidity in the near-surface atmospheric layer are changing. The evolution of the spectral absorption bands of water ice (1.2 and 1.5 μm) dependent on the season testifies to the changes in the microstructure of the surface layer in the North ploar cap caused by the sublimate re-crystallization processes in the ice sheet. The spatial pattern of the location of the areas where the microstructure most quickly grows could be formed under the influence of the stationary atmospheric waves.  相似文献   

13.
We have developed two automated detectors that can recognize the sulfate mineral jarosite in unknown visible to near-infrared spectra (350-2500 nm). The two detectors are optimized for use within the terrestrial and martian atmospheres. The detectors are built from Support Vector Machines trained using a generative model to create linear mixtures of library mineral spectra. Both detectors performed with an average ∼90% accuracy on laboratory spectra of single minerals and the laboratory and field spectra of rocks collected in a hydrothermal environment. This type of algorithm will contribute to the efficiency of onboard data analysis of landed and orbital visible/near-infrared spectrometers at Mars.  相似文献   

14.
We compare the electron densities of two martian ionospheric layers, which we call M1 and M2, measured by Mars Global Surveyor during 9-27 March 1999, with the electron densities of the terrestrial E and F1 layers derived from ionosonde data at six sites. The day-to-day variations are all linked to changes in solar activity, and provide the opportunity of making the first simultaneous study of four photochemical layers in the solar system. The ‘ionospheric layer index’, which we introduce to characterize ionospheric layers in general, varies between layers because different atmospheric chemistry and solar radiations are involved. The M2 and F1 layer peaks occur at similar atmospheric pressure levels, and the same applies to the M1 and E layers.  相似文献   

15.
The distinct patterns, relatively low intensities and peak positions of overtone-combination bands of silicates and oxides suggest that the 5–8 μm spectral region can provide clues for the dust composition when near optically thick conditions exist for the 10-μm silicate feature. We present 1000–2500 cm−1 room-temperature laboratory spectra obtained from powders of silicate, aluminate and nitride minerals and silicate glasses. The spectra exhibit overtone absorption bands with mass absorption coefficients ∼100 times weaker than the fundamentals. These data are compared with the 5–8 μm spectra of deeply embedded young stellar objects observed with the Short Wavelength Spectrometer on the Infrared Space Observatory . Fits of the laboratory data to the observations, after subtraction of the 6.0-μm H2O ice feature and the 6.0-μm feature identified with organic refractory material, indicate that crystalline melilite (a silicate) or metamict hibonite (a radiation-damaged crystalline aluminate) may be responsible for much of the 6.9-μm absorption feature in the observations, with melilite providing the best match. A weaker 6.2-μm absorption in the young stellar object spectra is well matched by the spectra of hydrous crystalline amphibole silicates (actinolite and tremolite). Relative abundances of Si–O in room-temperature amphiboles to low-temperature H2O ice are in the range 0.46–3.9 and in melilite are in the range 2.5–8.6. No astronomical feature was matched by the overtones of amorphous silicates because these bands are too broad and peak at the wrong wavelength. Hence, this analysis is consistent with the 10-μm features of these objects being due to a mixture of crystalline and amorphous silicates, rather than only amorphous silicates.  相似文献   

16.
The observations of Mars by the CRISM and OMEGA hyperspectral imaging spectrometers require correction for photometric, atmospheric and thermal effects prior to the interpretation of possible mineralogical features in the spectra. Here, we report on a simple, yet non-trivial, adaptation to the commonly-used volcano-scan correction technique for atmospheric CO2, which allows for the improved detection of minerals with intrinsic absorption bands at wavelengths between 1.9 and 2.1 μm. This volcano-scan technique removes the absorption bands of CO2 by ensuring that the Lambert albedo is the same at two wavelengths: 1.890 and 2.011 μm, with the first wavelength outside the CO2 gas bands and the second wavelength deep inside the CO2 gas bands. Our adaptation to the volcano-scan technique moves the first wavelength from 1.890 μm to be instead within the gas bands at 1.980 μm, and for CRISM data, our adaptation shifts the second wavelength slightly, to 2.007 μm. We also report on our efforts to account for a slight ∼0.001 μm shift in wavelengths due to thermal effects in the CRISM instrument.  相似文献   

17.
Evidence of recent gully activity on Mars has been reported based on the formation of new light toned deposits within the past decade, the origin of which remains controversial. Analogous recent light toned gully features have formed by liquid water activity in the Atacama Desert on Earth. These terrestrial deposits leave no mineralogical trace of water activity but rather show an albedo difference due to particle size sorting within a fine-grained mudflow. Therefore, spectral differences indicating varying mineralogy between a recent gully deposit and the surrounding terrain may not be the most relevant criteria for detecting water flow in arid environments. Instead, variation in particle size between the deposit and surrounding terrain is a possible discriminator to identify a water-based flow. We show that the Atacama deposit is similar to the observed Mars gully deposits, and both are consistent with liquid water activity. The light-toned Mars gully deposits could have formed from dry debris flows, but a liquid water origin cannot be ruled out because not all liquid water flows leave hydrated minerals behind on the surface. Therefore, the Mars deposits could be remnant mudflows that formed on Mars within the last decade.  相似文献   

18.
Infrared spectra of Io in the region 2.5-5.0 micrometers, including new observational data, are analyzed using detailed laboratory studies of plausible surface ices. Besides the absorption bands attributable to sulfur dioxide frosts, four infrared spectral features of Io are shown to be unidentified. These unidentified features show spatial and temporal band strength variations. One pair is centered around 3.9 micrometers (3.85 and 3.91 micrometers) and the second pair is centered around 3.0 micrometers (2.97 and 3.15 micrometers). These absorptions fall close to the fundamental stretching modes in H2S and H2O, respectively. The infrared absorption spectra of an extensive set of laboratory ices ranging from pure materials, to binary mixtures of H2S and H2O (either mixed at different concentrations or layered), to H2O:H2S:SO2 mixtures are discussed. The effects of ultraviolet irradiation (120 and 160 nm) and temperature variation (from 9 to 130 K) on the infrared spectra of the ices are examined. This comparative study of Io reflectance spectra with the laboratory mixed ice transmission data shows the following: (1) Io's surface most likely contains H2S and H2O mixed with SO2. The 3.85- and 3.91-micrometers bands in the Io spectra can be accounted for by the absorption of the S-H stretching vibration (nu 1) in H2S clusters and isolated molecules in an SO2-dominated ice. The weak 2.97- and 3.15-micrometers bands which vary spatially and temporally in the Io spectra coincide with the nu 3 and nu 1 O-H stretching vibrations of clusters of H2O molecules complexed, through hydrogen bonding and charge transfer interactions, with SO2. (2) The observations are well matched qualitatively by the transmission spectra of SO2 ices containing about 3% H2S and 0.1% H2O which have been formed by the condensation of a mixture of the gases onto a 100 K surface. (3) No new features are produced in the region 2.5 to 5.0 micrometers in the spectrum of these ices under prolonged ultraviolet irradiation or temperature variation up to 120 K. (4) Comparison of the Io spectra to transmission spectra of both mixed molecular ices and layered ices indicates that only the former can explain the shifts and splitting of the absorption bands seen in the Io spectrum and additionally can account for the fact that solid H2S is observed in the surface material of Io at temperature and pressure conditions above the sublimation point of pure H2S.  相似文献   

19.
Chemical analyses of soil samples performed at different landing sites on Mars suggest the presence of sulfate minerals. These minerals are also thought to be present in the globally mixed Martian bright soils covering large areas of the planet. However, remote soil spectra have so far provided only tentative identification of sulfates regarding mineral types and abundances. This paper concentrates on the detectability of four Ca- and Mg-sulfates (anhydrite, gypsum, kieserite, hexahydrite) in the 4–5 μm range of Martian remote soil spectra. This spectral range is important for sulfate detection as most fine-grained sulfates exhibit significant absorption bands between 4 and 5 μm, independent of the texture of the host soils (e.g., loose powdered or cemented soils). Furthermore, this is the spectral range for which the Planetary Fourier Spectrometer (PFS) and Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) instruments onboard ESA/Mars Express mission provide high spectral and spatial resolution data. Laboratory near- and mid-IR reflectance spectra of the pure sulfates and their mixtures with a terrestrial Martian soil analog were acquired. The results show that even the smallest amount of admixed sulfate (∼5 wt%) generates significant absorption features in the portion of the 4–5 μm range not covered by the saturated Martian atmospheric CO2 absorption band between 4.2 and 4.4 μm. Model calculations of the influence of emitted surface radiation on the detectability of sulfate features show that the depth of the features decreases strongly with increasing surface temperature of an observed area resulting in the fact that all sulfates are spectrally hidden at surface temperatures around 270 K even at ∼14 or ∼25 wt% sulfate content in the soils. Sulfates become increasingly detectable depending on the sulfate content if the surface temperature is below 260 K. The outcome of this work helps to constrain the conditions needed for remote detection of sulfates within Martian bright soils in the 4–5 μm range.  相似文献   

20.
A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H2O, with some structural groups showing more rapid H2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe3+- and H2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in CH related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号